Answer:
Glycogen is the primary energy source for muscle and liver cells.
Explanation:
Glycogen is a readily mobilized storage form of glucose. It is a very large, branched polymer of glucose residues that can be broken down to yield glucose molecules when energy is needed. Most of the glucose residues in glycogen are linked by α-1,4-glycosidic bonds. Branches at about every tenth residue are created by α-1,6-glycosidic bonds.
Glycogen is not as reduced as fatty acids are and consequently not as energy rich. Why do animals store any energy as glycogen? Why not convert all excess fuel into fatty acids? Glycogen is an important fuel reserve for several reasons. The controlled breakdown of glycogen and release of glucose increase the amount of glucose that is available between meals. Hence, glycogen serves as a buffer to maintain blood-glucose levels. Glycogen's role in maintaining blood-glucose levels is especially important because glucose is virtually the only fuel used by the brain, except during prolonged starvation. Moreover, the glucose from glycogen is readily mobilized and is therefore a good source of energy for sudden, strenuous activity. Unlike fatty acids, the released glucose can provide energy in the absence of oxygen and can thus supply energy for anaerobic activity.
Answer:
c. less than 60 mi/h
Explanation:
To calculate the average speed of the bus, we need to calculate the total distance traveled by the bus, as well as the total time of travel of the bus.
Total Distance Traveled = S = 100 mi + 100 mi
S = 200 mi
Now, for total time, we calculate the times for both speeds from A to b and then B to C, separately and add them.
Total Time = t = Time from A to B + Time from B to C
t = (100 mi)/(50 mi/h) + (100 mi)(70 mi/h)
t = 2 h + 1.43 h
t = 3.43 h
Now, the average speed of bus will be given as:
Average Speed = V = S/t
V = 200 mi/3.43 h
<u>V = 58.33 mi/h</u>
It is clear from this answer that the correct option is:
<u>c. less than 60 mi/h</u>
Answer:
Explanation:
volume of 20.9 N
= 20.9 / 11.5 m³
= 1.8174 m³
In one hour 1.8174 m³ flows
in one second volume flowing = 1.8174 / 60 x 60
= 5 x 10⁻⁴ m³
Rate of volume flow = 5 x 10⁻⁴ m³ / s .
Answer:
Free convection:
When heat transfer occurs due to density difference between fluid then this type of heat transfer is know as free convection.The velocity of fluid is zero or we can say that fluid is not moving.
Force convection:
When heat transfer occurs due to some external force then this type of heat transfer is know as force convection.The velocity of fluid is not zero or we can say that fluid is moving in force convection.
Heat transfer coefficient of force convection is high as compare to the natural convection.That is why heat force convection reach a steady-state faster than an object subjected to free-convection.
We know that convective heat transfer given as
q = h A ΔT
h=Heat transfer coefficient
A= Surface area
ΔT = Temperature difference
Answer:
bts biot bts biot jungkukkk
jungkukkkbiot
Explanation:
bts biot bts biot jungkukkk
jungkukkkbiot