Answer:
2.1 moles of water formed.
Explanation:
Given data:
Moles of water formed = ?
Moles of Ni(OH) = 4.20 mol
Solution:
Chemical equation:
2Ni(OH) → Ni₂O + H₂O
Now we will compare the moles of Ni(OH) with water.
Ni(OH) : H₂O
2 : 1
4.20 : 1/2×4.20 = 2.1 mol
2.1 moles of water formed.
Answer:
3
Explanation:
third answer might be right
From the ideal gas equation,
where n is number of moles, R is Universal gas constant, P is pressure, V is volume, and T is temperature of the gas.
The pressure and volume are inversely proportional to each other at constant temperature and number of moles.
Hence, on decreasing the pressure, the volume will increase.
As the hiker reaches a height of a mountain, the pressure would decrease which results in the reestablishment of equilibrium between gas molecules thus resulting in pushing of bag outwards.
Hence, the bag will expand as the hiker reaches the top of the mountain.
<h3>
Answer:</h3>
Al- [Ne] 3s²3p¹
As- [Ar] 4s²3d¹⁰ 4p³
Explanation:
- Electron configuration of an element shows the arrangement of electrons in the energy levels or orbitals in the atom.
- Noble-gas configuration involves use of noble gases to write the configuration of other elements.
- This is done by identifying the atomic number of the element and then identifying the noble gas that comes before that particular element on the periodic table.
- Aluminium: The atomic number of Al is 13. The noble gas before Aluminium is Neon which has 10 electrons. Therefore the remaining 3 electrons fills up the 3s and 3p sub orbitals.
- Thus, the noble-gas configuration of Al is [Ne] 3s²3p¹
2. Arsenic, Atomic number is 33
- Noble gas before Arsenic is Ar,. Argon has 17 electrons, then the remaining electrons fills up the 4s, 3d and 4p sub-orbitals.
- Thus, the noble-gas configuration of As is [Ar] 4s²3d¹⁰ 4p³
Answer:
Explanation:
When comparing the drops of oil and water, one thing I noticed was the shape. The water drop was more defined, whereas the drop of oil began to spread and was much flatter. This may be due to the waxy material, and how both oil and water react to the wax.