Answer:
The unit is the barn, which is equal to 10-28 m^2 or 10-24 cm^2
Explanation:
The standard unit for measuring a nuclear cross section (denoted as σ)
Answer:
Acceleration = 192.3 m/s² (Approx.)
Explanation:
Given:
Force = 125 N
Mass of ball = 0.65 kg
Find:
Acceleration
Computation:
We know that;
Acceleration = Force / Mas
So,
Acceleration = 125 / 0.65
Acceleration = 192.3 m/s² (Approx.)
(a) The velocity (in m/s) of the rock after 1 second is 11.28 m/s.
(b) The velocity of the rock after 2 seconds is 7.56 m/s.
(c) The time for the block to hit the surface is 4.03.
(d) The velocity of the block at the maximum height is 0.
<h3>
Velocity of the rock</h3>
The velocity of the rock is determined as shown below;
Height of the rock after 1 second; H(t) = 15(1) - 1.86(1)² = 13.14 m
v² = u² - 2gh
where;
- g is acceleration due to gravity in mars = 3.72 m/s²
v² = (15)² - 2(3.72)(13.14)
v² = 127.23
v = √127.23
v = 11.28 m/s
<h3>Velocity of the rock when t = 2 second</h3>
v = dh/dt
v = 15 - 3.72t
v(2) = 15 - 3.72(2)
v(2) = 7.56 m/s
<h3>Time for the rock to reach maximum height</h3>
dh/dt = 0
15 - 3.72t = 0
t = 4.03 s
<h3>Velocity of the rock when it hits the surface</h3>
v = u - gt
v = 15 - 3.72(4.03)
v = 0
Learn more about velocity at maximum height here: brainly.com/question/14638187
Answer:
8.8 m and 52.5 m
Explanation:
The vertical component and horizontal component of water velocity leaving the hose are


Neglect air resistance, vertically speaking, gravitational acceleration g = -9.8m/s2 is the only thing that affects water motion. We can find the time t that it takes to reach the blaze 10m above ground level



t = 3.49 or t = 0.58
We have 2 solutions for t, one is 0.58 when it first reach the blaze during the 1st shoot up, the other is 3.49s when it falls down
t is also the times it takes to travel across horizontally. We can use this to compute the horizontal distance between the fire-fighters and the building


Answer: First, we determine the circumference of the Mars by the equation below.
C = 2πr
Substituting the known values,
C = 2(π)(3,397 km) = 6794π km
To determine the tangential speed, we divide the circumference calculated above by the time it takes for Mars to complete one rotation and that is,
tangential speed = 6794π km / 24.6 hours = 867.64 km/h