Answer:
326149.2 KJ
Explanation:
The heat transfer toward and object that suffered an increase in temperature can be calculated using the expression:
Q = m*cv*ΔT
Where m is the mass of the object, cv is the specific heat capacity at constant volume, which basically means the amount of heat necessary for a 1kg of water to increase 1C degree in temperatur, and ΔT is the change in temperature.
A 65000 L swimming pool will have a mass of:
65000L *
= 65000 kg
The specific heat capacity at constant volume of water is equal to 4.1814 KJ/KgC.
We replace the data and get:
Q = m*cv*ΔT = 65000 kg * 4.1814 KJ/KgC * 1.2°C = 326149.2 KJ
Answer: v = 0.6 m/s
Explanation: <u>Momentum</u> <u>Conservation</u> <u>Principle</u> states that for a collision between two objects in an isolated system, the total momentum of the objects before the collision is equal to the total momentum of the objects after the collision.
Momentum is calculated as Q = m.v
For the piñata problem:


Before the collision, the piñata is not moving, so
.
After the collision, the stick stops, so
.
Rearraging, we have:


Substituting:

0.6
Immediately after being cracked by the stick, the piñata has a swing speed of 0.6 m/s.