Answer:
a. 15.4 seconds
b. 0.455 m/s
Explanation:
a. The carousel rotates at 0.13 rev/s.
This means that it takes the carousel 1 sec to make 0.13 of an entire revolution.
This means that time it will take to make a complete revolution is:
1 / 0.13 = 7.7 seconds
Therefore, the time it will take to make 2 revolutions is:
2 * 7.7 = 15.4 seconds
b. Let us calculate the linear velocity. Angular velocity is given as:

where v = linear velocity and r = radius
The radius of the circle is 3.5 m and the angular velocity is 0.13 rev/s, therefore:
0.13 = v / 3.5
v = 3.5 * 0.13 = 0.455 m/s
Linear velocity is 0.455 m/s
Explanation:
Let us assume that forces acting at point B are as follows.

= 0 ...... (1)
= 0
= 0 .......... (2)
Hence, formula for allowable normal stress of cable is as follows.

T = 
= 3925 kip
From equation (1),
= -3925
= -3925
= 12877.29 kip
From equation (2), -12877.29 (Cos 60) + W = 0
= 0
W = 6438.64 kip
Thus, we can conclude that greatest weight of the crate is 6438.64 kip.
To solve this problem we will apply the concepts related to the thermal efficiency given in an engine of the Carnot cycle. Here we know that efficiency is given under the equation

Where,
Temperature of Cold Body
Temperature of Hot Body
= Efficiency
According to the statement our values are:


Replacing we have that




Therefore the temperature of the heat source is 300K
In an alpha decay, an atom emits an alpha particle. An alpha particle consists of 2 protons and 2 neutrons: this means that during this kind of decay, the original atom loses 2 protons and 2 neutrons from its nucleus.
This also means that the atomic number Z of the element (the atomic number is the number of protons in the nucleus) decreases by 2 units in the process, while the mass number A (the mass number is the sum of the number of protons and neutrons) decreases by 4 units.