Answer:
Short circuit
Explanation:
The given figure shows a short circuit. It is defined as the circuit which allows the flow of electric current when there is no resistance. It shows a battery, bulb and connecting wires.
The wire across the bulb is connected from one terminal to another without any resistance in between them.
So, the correct option is (d) " short circuit ".
Answer:
period of oscillations is 0.695 second
Explanation:
given data
mass m = 0.350 kg
spring stretches x = 12 cm = 0.12 m
to find out
period of oscillations
solution
we know here that force
force = k × x .........1
so force = mg = 0.35 (9.8) = 3.43 N
3.43 = k × 0.12
k = 28.58 N/m
so period of oscillations is
period of oscillations = 2π ×
................2
put here value
period of oscillations = 2π ×
period of oscillations = 0.6953
so period of oscillations is 0.695 second
Magnitude of normal force acting on the block is 7 N
Explanation:
10N = 1.02kg
Mass of the block = m = 1.02 kg
Angle of incline Θ
= 30°
Normal force acting on the block = N
From the free body diagram,
N = mgCos Θ
N = (1.02)(9.81)Cos(30)
N = 8.66 N
Rounding off to nearest whole number,
N = 7 N
Magnitude of normal force acting on the block = 7 N
Answer:

Explanation:
Change in velocity considering the x component will be
Final velocity-Initial velocity

Change in velocity considering the y component will be
Final velocity-Initial velocity

Resultant change in velocity
Acceleration= change in velocity per unit time hence

<span> Use the Law of Cosines, where you have a triangle with included angle of 145 degrees and sides of 16 and 18. You are then solving the equation: </span>
<span>d^2 = 16^2 + 18^2 - 2(16)(18)cos(145) </span>