The answer is; A
Fertilizer application can be detrimental when there is overapplication. The excess nutrients are washed away by runoff after precipitation. These nutrients end up in water bodies and cause algal blooms. Algal blooms asphyxiate aquatic life hence causing a drastic reduction in aquatic populations.
Increasing the separation distance between objects decreases the force of attraction or repulsion between the objects. And decreasing the separation distance between objects increases the force of attraction or repulsion between the objects. Electrical forces are extremely sensitive to distance.
Answer:
Decreases by
times
Explanation:
The intensity of a sound is defined as the energy of the sound that is flowing in an unit time through the unit area which is in the direction that is perpendicular to the direction of the sound waves movement.
The intensity of energy is described by the inverse square law. It states that the intensity varies inversely with the distance square of the distance.
In other words, the sound intensity decreases as inversely proportional to the squared of the distance. i.e. 
In the context when the distance was 3 m, the intensity of the sound was = 
But when the distance became 6 cm or 0.06 m, the sound intensity decreases by = 
=
times
Answer:
a) Q1=Q2=480μC V1=240V V2=60V
b) Q1=96μC Q2=384μC V1=V2=48V
c) Q1=Q2=0C V1=V2=0V
Explanation:
Let C1 = 2μC and C2=8μC
For part (a) of this problem, we know that charge in a series circuit, is the same in C1 and C2. Having this in mind, we can calculate equivalent capacitance first:




For part (b), the capacitors are in parallel now. In this condition, the voltage is the same for both capacitors:
So, 
Total charge is the same calculated for part (a), so:
Solving for Q2:
Q2 = 384μC Q1 = 96μC.
Therefore:
V1=V2=48V
For part (c), both capacitors would discharge, since their total voltage of 300V would by applied to a wire (R=0Ω). There would flow a huge amount of current for a short period of time, and capacitors would be completely discharged. Q1=Q2=0C V1=V2=0V