1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Orlov [11]
3 years ago
15

What do ocean waves and sound waves have in common?

Physics
2 answers:
Maksim231197 [3]3 years ago
7 0
D. Both exhibit the same particle-to-particle interaction.Because disturbance is propagated with the help of particles. Other than this,[ <span>light waves are electromagnetic waves. ocean waves and sound waves are mechanical waves. they are able to transfer energy. electromagnetic wave and ocean waves are transverse waves while sound waves are the longitudinal wave. they show wave properties: reflection, refraction, diffraction, interference, and plane-polarization. longitudinal waves such as sound waves cannot be plane-polarized]. The one in the box shows different examples of waves with their examples. Hope it helps.</span>
Nataly [62]3 years ago
4 0

Answer:

E. Both are mechanical waves.

Explanation:

As we know that sounds waves are longitudinal waves in which medium particles will oscillates parallel to the wave propagation.

While in ocean the waves are of both nature i.e. transverse and longitudinal both. Here the energy is transferred to all molecules inside the water by transverse nature of wave while in the case of surface the energy is transferred by longitudinal waves.

So here we can say that common thing between them is that both type of waves required medium particles to propagate energy through the medium.

So all those waves which required medium particles to propagate energy then it is known as mechanical waves

So here correct answer will be

E. Both are mechanical waves.

You might be interested in
A liquid of density 830 kg/m3 flows through a horizontal pipe that has a cross-sectional area of 1.20 x 10-2 m2 in region A and
kicyunya [14]

Answer:

A) volume flow rate = 0.047 m3/s

B) mass flow rate = 39.01 kg/s

Explanation:

Detailed explanation and calculation is shown in the image below

3 0
2 years ago
1. Which statement about subatomic particles is not true?
igomit [66]

1. Protons and neutrons have the same charge.

Protons have positive charge, equal to e=+1.6\cdot 10^{-19} C, while neutrons have zero charge.

2. mass number

The mass number of an atom is equal to the sum of protons and neutrons inside its nucleus.

3. Atoms are made up of smaller particles.

According to Dalton's theory, atoms are the smallest particles that make matter, and they are indivisible and indestructible, so they are NOT made up of smaller particles.

4. a solid sphere

In Dalton's theory, atoms are not made of smaller particles, so we can think them as solid spheres.

5. J. J. Thomson

In his experiment with cathode ray tubes, JJ Thomson demonstrated the existance of the electrons, which are negatively charged particles inside the atom. In his model of the atom (plum-pudding model), Thomson thought the atom consists of a uniform positive charge and the electrons are located inside this positive charge.

6. An electron has the same amount of energy in all orbitals.

In fact, each orbital corresponds to a different energy level: the farther the orbital from the nucleus, the higher the energy of the electrons contained in that orbital.

7. A hydrogen atom in heavy water has an extra neutron.

Heavy water is a type of water that contains deuterium, which is an isotope of the hydrogen consisting of one proton and one neutron (so, one extra neutron).

8. The glowing beam was always deflected by charged plates

In his cathode's ray tube experiment, Thomson shows that the beam of unknown particles (= the electrons) were deflected by charge plates, so the particles had to be also electrically charged.

9. electrons move to a lower energy level

When electrons move from a higher energy level to a lower energy, they emit a photon (light) of energy equal to the difference in energy between the two energy levels.

10. orbital

In quantum mechanics, electrons in the atom are not precisely located, since we cannot determine their exact position and velocity at the same time. Therefore, we can only describe regions of space where the electrons have a certain probability to be found, and these regions of space are called orbitals.

11. 14

According to Dalton's theory, the proportions of the reactants must be respected in order to form the same compound. Therefore, we can write:

2 g: 4 g = X : 28 g\\X=\frac{2 g \cdot 28 g}{4 g}=14 g

12. negative charge, found outside the nucleus

Electrons are particles with negative charge of magnitude e=-1.6\cdot 10^{-19}C that orbit around the nucleus. The nucleus, instead, consists of protons (positively charged, with charge opposite to the electron) and neutrons (neutrally charged).

13. move from higher to lower energy levels

When electrons move from a higher energy level to a lower energy inside a neon atom, they emit a photon (which is light) whose energy is equal to the difference in energy between the two energy levels.

14. atomic number from its mass number

In fact:

- the atomic number of an atom (Z) is equal to the number of protons inside the nucleus

- the mass number of an atom (A) is equal to the sum of protons+neutrons inside the nucleus

Therefore, we can find the number of neutrons in the nucleus by calculating the difference between A and Z:

Number of neutrons = A - Z

15. None of them

None of these examples is a good analogy to describe the location of an electron in an atomic orbital: in fact, the position of an electron in an orbital cannot be precisely described, we can only describe the probability to find the electron in a certain position, and none of these example is an analogy of this model.

8 0
3 years ago
The drawing shows an object attached to an ideal spring, which is hanging from the ceiling. The unstrained length of the spring
Andrew [12]

Image is missing so I have attached it.

Also, the options are missing and it is;

A) KE is has a maximum value at position 3. EPE has a maximum value at position 2. GPE has a maximum value at position 1.

B) KE is has a maximum value at position 1. EPE has a maximum value at position 2. GPE has a maximum value at position 3.

C) KE is has a maximum value at position 2. EPE has a maximum value at position 3. GPE has a maximum value at position 1.

D) KE is has a maximum value at position 1. EPE has a maximum value at position 3. GPE has a maximum value at position 2.

E) KE is has a maximum value at position 2. EPE has a maximum value at position 1. GPE has a maximum value at position 3.

Answer:

Option C is the correct answer which says; KE is has a maximum value at position 2. EPE has a maximum value at position 3. GPE has a maximum value at position 1.

Explanation:

If an object vibrates about its mean position, under the influence of a restoring force, such that restoring force is directly proportional to the displacement from the mean position, the motion of the object is called simple harmonic motion. During Simple harmonic motion, the sum of Kinetic and potential energy remains constant.

Now, Looking at the diagram, Kinetic Energy (KE) is maximum at position 2.

Looking at the options, only C and E agree with this.

Thus, our answer is either option C or E.

However, Option E is not going to be right because it says that GPE is at a maximum at position 3, which is not true as the maximum GPE will occur at position 1.

Thus,

Option C fulfills that and therefore will be the correct answer.

7 0
3 years ago
A 320-m length of wire stretches between two towers and carries a 120-a current. determine the magnitude of the force on the wir
MissTica
Information provided:
Length of wire, L = 320 m
Current through the wire, I = 120 Amps
Earth's magnetic field acting on the wire, B = 5.0*10^-5 T
Angle at which the magnetic field acts, Ф = 60°

By definition;
Force on the wire, F = LBI Sin Ф

Substituting;
F = 320*5*10^-5*120*Sin 60 = 1.663 N
3 0
2 years ago
Why don't we see objects in the universe colliding or moving towards each other due to gravitational force?​
Citrus2011 [14]

Answer:

the objects in the universe are evenly placed. This means that a celestial object's gravity may not be able to attract another object. Another reason may be that the stars in solar systems act as points of equilibrium for the planets in the system. Take for example the sun. It maintains the position of the planets in the system and likewise the earth maintains the position of the moon. You can picture it as evenly placed atoms in matter and the subsequent electrons held by the nucleus

8 0
2 years ago
Read 2 more answers
Other questions:
  • Cathode-ray tubes produce images on the principle of induced emf. true or false?
    5·1 answer
  • _____ is the frictional force needed to slow an object in motion
    11·2 answers
  • If grade 7 students learn six periods and if one period is 40 minutes then how many seconds they learn per day
    11·2 answers
  • I need help with two more Physics problems​
    7·2 answers
  • What are examples of devices that use electromagnetic waves
    13·1 answer
  • Daniel has a bill of 2750 on his credit card. If interest is charged at a rate of 15% p.a., calculate the amount of interest tha
    12·1 answer
  • The space craft has a mass of 100kg its velocity increases from 20m/s to 50m/s in 10s. what force is acting on the space craft?​
    9·1 answer
  • A gas expands against a constant external pressure of 2.00 atm until its volume has increased from 6.00 to 10.00 L. During this
    5·1 answer
  • If Maggie is walking at 1.4 m/s and accelerates at 0.20 m/s^2. What is her final velocity at the end of 100.0m
    13·1 answer
  • a crude approximation of voice production is to consider the breathing passages and mouth to be a resonating tube closed at one
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!