Answer:
<h2>E) 52.5 cm</h2>
Explanation:
Step one:
given data
period T= 3 milliseconds= 0.003
velocity v= 175m/s
wave lenght λ=?
Step two:
we know that f=1/T
the expression relating period and wave lenght is
v=λ/T
λ=v*T
λ=175*0.002
λ=0.525m
to cm= 0.525*100
=52.5cm
The wavelength of the wave is E) 52.5 cm
If the rod is in rotational equilibrium, then the net torques acting on it is zero:
∑ τ = 0
Let's give the system a counterclockwise orientation, so that forces that would cause the rod to rotate counterclockwise act in the positive direction. Compute the magnitudes of each torque:
• at the left end,
τ = + (50 N) (2.0 m) = 100 N•m
• at the right end,
τ = - (200 N) (5.0 m) = - 1000 N•m
• at a point a distance d to the right of the pivot point,
τ = + (300 N) d
Then
∑ τ = 100 N•m - 1000 N•m + (300 N) d = 0
⇒ (300 N) d = 1100 N•m
⇒ d ≈ 3.7 m
I think it is D. I hope this helps