The ball's vertical position
in the air at time
is

The ball is at its original height when
, which happens at


Meanwhile, the ball's horizontal position
at time
is

So when the ball reaches its original height a second time, the ball will have traveled a horizontal distance of

(which you might recognize as the formula for the range of a projectile)
To reach a distance of
, the initial speed
would be

Frequency and wavelength are inversely related. That is, when frequency increases, the value of the wavelength decreases and vice versa. The constant of proportionality of the relation is the speed of light that has a value of 3.0x10^8 m/s. We calculate as follows:
wavelength = speed of light /frequency
488x10^-9 = 3.8x10^8 / frequency
frequency = 6.15x10^14 /s = 6.15x10^14 Hz ------> OPTION 3
Answer:
Explanation:
Given that,
The spring constant
K = 1N/m
Frequency of motion
f = 14Hz
We want calculate the mass m?
The frequency of spring system is related to the mass by
From w = √k/m
Where w = 2πf
f = 1/2π √k/m
Where,
w is angular frequency in rad/s
m is mass of object attached in kg
k is the spring constant in N/m
f Is the frequency in Hz
Then, make m subject of formula
Multiply both sides by 2π
2πf = √k/m
Square both sides
4π²f² = k/m
Then, k= 4π²f² × m
m = k / 4π²f²
m = 1 / (4π² × 1.4)
m = 1 / 55.27
m = 0.0181 kg
m= 18.1 g
The mass of the object attached in 18.1 g or 0.0181 kg
Hot and cold water rising and sinking through other water
is definitely a description of convection.
Answer:
a = 40 [m/s²]
Explanation:
These kinds of problems can be solved using Newton's second law, which tells us that the sum of forces on a body is equal to the product of mass by acceleration.
∑F = m*a
where:
F = force = 6 [N]
m = mass = 0.15 [kg]
a = acceleration [m/s²]
![a=F/m\\a=6/0.15\\a=40[m/s^{2} ]](https://tex.z-dn.net/?f=a%3DF%2Fm%5C%5Ca%3D6%2F0.15%5C%5Ca%3D40%5Bm%2Fs%5E%7B2%7D%20%5D)