Answer:
3 × 10⁴ kJ
Explanation:
Step 1: Write the balanced thermochemical equation
C₃H₈(g) + 5 O₂(g) ⟶ 3 CO₂(g) + 4 H₂O(g) ΔH = -2220 kJ
Step 2: Calculate the moles corresponding to 865.9 g of H₂O
The molar mass of H₂O is 18.02 g/mol.
865.9 g × 1 mol/18.02 g = 48.05 mol
Step 3: Calculate the heat produced when 48.05 moles of H₂O are produced
According to the thermochemical equation, 2220 kJ of heat are evolved when 4 moles of H₂O are produced.
48.05 mol × 2220 kJ/4 mol = 2.667 × 10⁴ kJ ≈ 3 × 10⁴ kJ
Please provide the choices here.
The similarity of the bands in the crystal of a metal to the atomic orbitals can be explained by the band theory of metals. In an atom, when the electrons get excited, the electrons jumps to a higher orbital so as to reach equilibrium. This is analogous to the electrons in the metals which also jumps to another band once excited by an external energy (e.g. electrical energy).
Answer:
300g of water because its a larger amount
Explanation:
Answer:
2Cl+2e -->2Cl^-
Explanation:
reduction is the gain of electrons and this is the only option which fits the definition.