This problem is a piece o' cake, IF you know the formulas for both kinetic energy and momentum. So here they are:
Kinetic energy = (1/2) · (mass) · (speed²)
Momentum = (mass) · (speed)
So, now ... We know that
==> mass = 15 kg, and
==> kinetic energy = 30 Joules
Take those pieces of info and pluggum into the formula for kinetic energy:
Kinetic energy = (1/2) · (mass) · (speed²)
30 Joules = (1/2) · (15 kg) · (speed²)
60 Joules = (15 kg) · (speed²)
4 m²/s² = speed²
Speed = 2 m/s
THAT's all you need ! Now you can find momentum:
Momentum = (mass) · (speed)
Momentum = (15 kg) · (2 m/s)
<em>Momentum = 30 kg·m/s</em>
<em>(Notice that in this problem, although their units are different, the magnitude of the KE is equal to the magnitude of the momentum. When I saw this, I wondered whether that's always true. So I did a little more work, and I found out that it isn't ... it's a coincidence that's true for this problem and some others, but it's usually not true.)</em>
<h3><u>Answer;</u></h3>
The different atoms have different quantized energy levels
<h3><u>Explanation;</u></h3>
- The atoms of different elements have different energy levels because they have different nuclear charges and spins, and different numbers of electrons.
- Each different kind of atom, like hydrogen or radon, has a distinct nuclear charge and number of electrons. This makes the potential energy function different for each atom, and therefore results in different energy levels.
- In an emmission spectra, each bright band corresponds to a difference between energy levels within the atom.
The amplitude of a wave tells us about the intensity or brightness of the light relative to other light waves of the same wavelength.
If you don't wear a helmet and let's say you fell off your bike, you can severely injure your head! But if you DO wear a helmet and you fell off your bike, there's about I predict a 98% chance that you won't injure but sometimes it's 100%
hope this helps!<span />