1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andru [333]
3 years ago
15

These are the most widely used tools and most often abuse tool​

Engineering
2 answers:
Mars2501 [29]3 years ago
4 0
Where is the picture in this problem? How am I supposed to answer if I can’t see any footage taken from this problem.
mojhsa [17]3 years ago
3 0
Probably a screw driver
You might be interested in
Identify the phase of the design process illustrated in the following scenario, and justify its importance. Kristin has recently
zaharov [31]

Answer:

The design process is at the verify phase of Design for Six Sigma

Explanation:

In designing for Six Sigma, DFSS, is a product or process design methodology of which the goal is the detailed identification of the customer business needs by using measurements tools such as statistical data, and incorporating the identified need into the created product which in this case is the hydraulic robot Kristin Designed

Implementation of DFSS follows a number of stages that are based on the DMAIC (Define - Measure - Analyze - Improve) projects such as the DMADV which stand for define - measure - analyze - verify

Therefore, since Kristin is currently ensuring that the robot is working correctly and meeting the needs of her client the design process is at the verify phase.

5 0
3 years ago
• Build upon the results of problem 3-85 to determine the minimum factor of safety for fatigue based on infinite life, using the
Rudik [331]

Answer:

minimum factor of safety for fatigue is = 1.5432

Explanation:

given data

AISI 1018 steel cold drawn as table

ultimate strength Sut = 63.800 kpsi

yield strength Syt = 53.700 kpsi

modulus of elasticity E = 29.700 kpsi

we get here

\sigma a = \sqrt{(\sigma a \times kb)^2+3\times (za\times kt)^2}    ...........1

here kb and kt = 1 combined bending and torsion fatigue factor

put here value and we get

\sigma a =  \sqrt{(12 \times 1)^2+3\times (0\times 1)^2}  

\sigma a = 12 kpsi

and

\sigma m = \sqrt{(\sigma m \times kb)^2+3\times (zm\times kt)^2}     ...........2

put here value and we get

\sigma m = \sqrt{(-0.9 \times 1)^2+3\times (10\times 1)^2}  

\sigma m = 17.34 kpsi

now we apply here goodman line equation here that is

\frac{\sigma m}{Sut} +  \frac{\sigma a}{Se} = \frac{1}{FOS}     ...................3

here Se = 0.5 × Sut

Se = 0.5 × 63.800 = 31.9 kspi

put value in equation 3 we get

\frac{17.34}{63.800} +  \frac{12}{31.9} = \frac{1}{FOS}  

solve it we get

FOS = 1.5432

6 0
3 years ago
Imagine yourself as an Engineer. How would you design your own Wind Turbine to generate electricity (at least 40 watts) at your
topjm [15]

Answer: You need metal and other stuff

Explanation:

6 0
2 years ago
Hello, how are you? ​
Kisachek [45]

Answer:

Hello, I'm good. Thank you for asking

8 0
2 years ago
Read 2 more answers
7.4 A pretimed four-timing-stage signal has critical lane group flow rates for the first three timing stages of 200, 187, and 21
Irina18 [472]

Answer:

16 seconds

Explanation:

Given:

C = 60

L = 4 seconds each = 4*4 =16

In this problem, the first 3 timing stages are given as:

200, 187, and 210 veh/h.

We are to find the estimated effective green time of the fourth timing stage. The formula for the estimated effective green time is:

g = (\frac{v}{s}) (\frac{C}{X})

Let's first find the fourth stage critical lane group ratio \frac{v}{s} , using the formula:

C = \frac{1.5L +5}{1 - ( \frac{200}{1800} + \frac{187}{1800} + \frac{210}{1800}) + ( \frac{v}{s})}

60 = \frac{1.5*16 + 5}{1 - ( \frac{200}{1800} + \frac{187}{1800} + \frac{210}{1800}) + ( \frac{v}{s})}

60 = \frac{24+5}{1 - (0.332 + ( \frac{v}{s}))}

Solving for (\frac{v}{s}), we have:

(\frac{v}{s}) = 0.185

Let's also calculate the volume capacity ratio X,

X = (\frac{200}{1800} + \frac{187}{1800} + \frac{210}{1800} + 0.185)(\frac{60}{60-16}

X = 0.704

For the the estimated effective green time of the fourth timing stage, we have:

g_4 = (\frac{v}{s}) (\frac{C}{X})

Substituting figures in the equation, we now have:

g_4 = (0.185) (\frac{60}{0.704})

g_4 = 15.78 seconds

15.78 ≈ 16 seconds

The estimated effective green time of the fourth timing stage is 16 seconds

8 0
3 years ago
Other questions:
  • Consider a plane composite wall that is composed of two materials of thermal conductivities kA = 0.1 W/m*K and kB = 0.04 W/m*K a
    13·1 answer
  • Automotive service P2 Wastewater Management and Handling Spins
    9·1 answer
  • A mass weighing 22 lb stretches a spring 4.5 in. The mass is also attached to a damper with Y coefficient . Determine the value
    12·1 answer
  • All of the following are categories for clutch covers except
    11·1 answer
  • A fan draws air from the atmosphere through a 0.30-mdiameter round duct that has a smoothly rounded entrance. A differential man
    14·1 answer
  • I need help due today please help
    5·1 answer
  • You have a motor such that if you give it 12 Volt, it will eventually reach a steady state speed of 200 rad/s. If it starts from
    10·1 answer
  • PLS HELP! which statement is the best example of how society affects the useof technology? A. Farmers in hilly areas grow crops
    10·1 answer
  • Lets Try This: study the pictures. Describe what you see and think about it. write your answer on a sheet of paper. home room
    15·1 answer
  • Why not just put all the set up steps within each step? it is because we want to keep our code __ ? (3 letters)
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!