Answer:
The design process is at the verify phase of Design for Six Sigma
Explanation:
In designing for Six Sigma, DFSS, is a product or process design methodology of which the goal is the detailed identification of the customer business needs by using measurements tools such as statistical data, and incorporating the identified need into the created product which in this case is the hydraulic robot Kristin Designed
Implementation of DFSS follows a number of stages that are based on the DMAIC (Define - Measure - Analyze - Improve) projects such as the DMADV which stand for define - measure - analyze - verify
Therefore, since Kristin is currently ensuring that the robot is working correctly and meeting the needs of her client the design process is at the verify phase.
Answer:
minimum factor of safety for fatigue is = 1.5432
Explanation:
given data
AISI 1018 steel cold drawn as table
ultimate strength Sut = 63.800 kpsi
yield strength Syt = 53.700 kpsi
modulus of elasticity E = 29.700 kpsi
we get here
=
...........1
here kb and kt = 1 combined bending and torsion fatigue factor
put here value and we get
=
= 12 kpsi
and
=
...........2
put here value and we get
=
= 17.34 kpsi
now we apply here goodman line equation here that is
...................3
here Se = 0.5 × Sut
Se = 0.5 × 63.800 = 31.9 kspi
put value in equation 3 we get
solve it we get
FOS = 1.5432
Answer: You need metal and other stuff
Explanation:
Answer:
Hello, I'm good. Thank you for asking
Answer:
16 seconds
Explanation:
Given:
C = 60
L = 4 seconds each = 4*4 =16
In this problem, the first 3 timing stages are given as:
200, 187, and 210 veh/h.
We are to find the estimated effective green time of the fourth timing stage. The formula for the estimated effective green time is:
Let's first find the fourth stage critical lane group ratio
, using the formula:


Solving for
, we have:
Let's also calculate the volume capacity ratio X,

X = 0.704
For the the estimated effective green time of the fourth timing stage, we have:
Substituting figures in the equation, we now have:
15.78 ≈ 16 seconds
The estimated effective green time of the fourth timing stage is 16 seconds