A, because the number of valence shell electrons (outer shell electrons) tells us how much the element or compound wants to bond or give up electrons. Most compounds and elements want to have eight valence ectrons in it's outer ring. So if an atom is far away from having eight, it will want to react more often.
Answer:
Explanation:
Well, obviously a molecule with polar bonds can be polar in itself. It's like saying I am an atheltic person who can just reach the basketball rim with my head and also I can dunk.
But if the question is how can a molecule that in non-polar have polar bonds, well, its because the polar bonds' dipole cancels each other out. It's like a tight rope. If a person pulls in one direction, it intuitively, the rope would go in that direction. However, if a person pulls in the other direction with the same amount of force, the rope stays still. This is the same case. Although molecules can have different electronegativities, the pull of electrons in one direction is cancelled out by a pull in the opposite direction, making the net dipole 0.
This is common for main VSERP shaped molecules like linear, trigonal planar, tetrahedral, trigonal bipyramidal, and octahedral.
4 carbon electrons. Hope this helps have a nice day
Answer:
It will have 5 valence electrons as its in group 5.
The atom will gain as its closer to the full configuration 8.
The charge will be 3- as it will gain 3 electrons.
Both strong acid and strong base will alter the solubility and the nature of a protein. This is because, adding a strong acid or base to a protein will drastically change the pH of the protein and this will leads to formation of precipitation and denaturation of the protein.