The correct Lewis structure of SO2 is the Lewis structure that shows all the 12 valence electrons in the molecule.
A Lewis structure shows the number of valence electrons on the valence shell of all the atoms in a compound. The electrons are shown as dots around the symbol of each element or a dash to indicate shared electrons in a covalent bond.
Looking at the Lewis structure of SO2 attached to this answer, we can see the twelve valence electrons in the molecule and how they are distributed around each atom as shown.
Learn more: brainly.com/question/20514601
Answer:
d. compound
Explanation:
<u>Mixture </u>: It is defined as the substance that is made by the combination of two or more different components which are physically combined.
<u>Homogeneous mixture</u> are the mixtures in which the composition of the substances in it are uniformly mixed. <u>Heterogeneous mixture</u> are the mixtures in which the composition of the substances in it are not uniformly mixed.
<u>
Compound :</u> It is a pure substance which is made from atoms of different elements combined together in a fixed ratio by mass and are chemically bonded.
<u>
Element :</u> It is a pure substance which is composed of atoms of similar elements.
<u>As discussed above, The different elements in the compounds are chemically bonded and hence, it is the substance which can be broken down into the simpler units when it subtend only by the chemical change.</u>
Answer:
The pH of the sample is 3,4.
Explanation:
We calculate the pOH from the formula pOH = -log (OH-). We know that for all aqueous solutions: pH + pOH = 14, and from there we clear pH:
pOH= -log (OH-)=10,60
pH + pOH = 14
pH + 10,60 = 14
pH=14 -10,60
<em>pH=3,4</em>
Answer:
the mass number is the number of protons and neutrons added and the average atomic mass is the weight of the protons and neutrons
Answer:
Option D) Compound B may have a lower molecular weight.
Explanation:
Compound A and B are standing at the same temperature yet compound A is evaporating more slowly than compound B.
This simply indicates that compound B have a lower molecular weight than compound A.
This can further be seen when gasoline and kerosene are placed under same temperature. The gasoline will evaporate faster than kerosene because the molecular weight of the gasoline is low when compared to that of the kerosene.