Answer:
20.96 m/s^2 (or 21)
Explanation:
Using the formula (final velocity - initial velocity)/time = acceleration, we can plug in values and manipulate the problem to give us the answer.
At first, we know a car is going 8 m/s, that is its initial velocity.
Then, we know the acceleration, which is 1.8 m/s/s
We also know the time, 7.2 second.
Plugging all of these values in shows us that we need to solve for final velocity. We can do so by manipulating the formula.
(final velocity - initial velocity) = time * acceleration
final velocity = time*acceleration + initial velocity
After plugging the found values in, we get 20.96 m/s/s, or 21 m/s
Answer: 31.6ft
Explanation:
Check the attachment for the diagram.
According to the right angle triangle AEC, we will use Pythagoras theorem to get |AC|. Note that |AE| = |AB| - |CD|
that is 20ft - 10ft = 10ft
According to the theorem, the square of the sum of the adjacent side and the opposite side is equal to the square of the hypotenuse.
|AE|^2 + |EC|^2 = |AC|^2
10^2 + 30^2 = |AC|^2
100 + 900 = |AC|^2
|AC| = √1000
|AC| = 31.6ft
Therefore, the wire should be anchored 31.6ft to the ground to minimize the amount of wire needed.
The answer is food irradiation. This involves the brief exposure of food to gamma rays or X-rays to kill pathogens that may contribute to food spoilage. This increases the shelf-life of the food. Gamma rays and X-rays emanate from nuclear decay of radioactive materials such as uranium..
Answer:
Explanation:
Given
Original Frequency 
apparent Frequency 
There is change in frequency whenever source move relative to the observer.
From Doppler effect we can write as

where
apparent frequency
v=velocity of sound in the given media
velocity of source
velocity of observer
here 




i.e.fork acquired a velocity of 
distance traveled by fork is given by

where v=final velocity
u=initial velocity
a=acceleration
s=displacement



Yes, that's right. It's the 'Planck' length, not the 'Planet' length.
You could easily find these with a web search. But in gratitude
for the bountiful 5 points, I've saved you the trouble.
AND guess what ! By doing that, I learned something, and
you didn't.
Speed of light (c): 299,792,458 meters per second
Gravitational constant (G): 6.67 x 10⁻¹¹ newton-meter²/kilogram²
Planck's Konstant (h): 6.63 x 10⁻³⁴ joule-second
Planck Length: 1.6 x 10⁻³⁵ meter
(about 10⁻²⁰ the size of a proton)
Planck Time: 10⁻⁴³ second
(about the time it takes to travel
a Planck Length at the speed of light)