Explanation:
It is given that,
Number of turns, N = 200
Area of cross section, A = 8.5 cm²
Magnetic field is directed out of the paper and is, B = 0.06 T
The magnetic field is out of the paper decreases to 0.02 T in 12 milliseconds. We need to find the direction of current induced. The induced emf is given by :

Since, 
I is the induced current

According to Lenz's law, the direction of induced current is such that it always opposes the change in current that causes it.
Here, the field is directed out of the plane of the paper, this gives the induced current in counterclockwise direction.
The french revolution led to many deaths and impacted history because of the amount of life lost
Answer:
a. 12 m/s² down
Explanation:
Acceleration has units of length per time squared. Acceleration is a vector, so it also has a direction.
Answer:
A
Explanation:
Think about rubbing your hands together- the friciton produces heat
Answer:
Angle = 0.2520 radians
Explanation:
Complete question:
Sound with frequency 1220Hz leaves a room through a doorway with a width of 1.13m . At what minimum angle relative to the centerline perpendicular to the doorway will someone outside the room hear no sound? Use 344m/s for the speed of sound in air and assume that the source and listener are both far enough from the doorway for Fraunhofer diffraction to apply. You can ignore effects of reflections.
Given Data:
Speed of sound =v= 344 m/sec ;
Width of doorway =d= 1.13m ;
Frequency of sound =f= 1220 Hz ;
Solution:
As we know that
Wvelength = w = v/f = 344/1220 = 0.281967m
Now we also know that
w = dsin(A) where A is the angle
A = arcsin(w/d) =14.44° = 14.44*(3.14/180) = 0.2520 radians
At the angle of 0.252 radians relative to the centreline perpendicular to the doorway a person outside the room will hear no sound under given conditions.