The initial kinetic energy of the car is

Then, the velocity of the car is decreased by half:

so, the new kinetic energy is

So, the new kinetic energy is 1/4 of the initial kinetic energy of the car. Numerically:
Answer:
True
Explanation:
Magnitude is the "value" the greater the value the greater the force is and vice versa
Motion Energy
I am writing this so it can be more than 20 letters
Answer:
a) 
b) 
c) 
Explanation:
From the exercise we know the initial velocity of the projectile and its initial height

To find what time does it take to reach maximum height we need to find how high will it go
b) We can calculate its initial height using the following formula
Knowing that its velocity is zero at its maximum height



So, the projectile goes 1024 ft high
a) From the equation of height we calculate how long does it take to reach maximum point



Solving the quadratic equation



So, the projectile reach maximum point at t=2s
c) We can calculate the final velocity by using the following formula:


Since the projectile is going down the velocity at the instant it reaches the ground is:

Answer:
If you push horizontally with a small force, static friction establishes an equal and opposite force that keeps the book at rest. As you push harder, the static friction force increases to match the force. Eventually maximum static friction force is exceeded and the book moves.
Explanation: