Hello:
The pivot point of a LEVER is called the fulcrum.
Answer:
432.78 Kg
Explanation:
From the question given above, the following data were obtained:
Distance apart (r) = 6.8 m
Force of attraction (F) = 5.4×10¯⁸ N
Mass of Daffy Duck (M₁) = 86.5 kg
Mass of Minnie Duck (M₂) =?
NOTE: Gravitational constant (G) = 6.67×10¯¹¹ Nm²/Kg²
The mass of Minnie Duck can be obtained as follow:
F = GM₁M₂ / r²
5.4×10¯⁸ = 6.67×10¯¹¹ × 86.5 × M₂ / 6.8²
5.4×10¯⁸ = 6.67×10¯¹¹ × 86.5 × M₂ / 46.24
Cross multiply
6.67×10¯¹¹ × 86.5 × M₂ =5.4×10¯⁸ × 46.24
Divide both side by 6.67×10¯¹¹ × 86.5
M₂ = 5.4×10¯⁸ × 46.24 / 6.67×10¯¹¹ × 86.5
M₂ = 432.78 Kg
Therefore, the mass of Minnie Duck is 432.78 Kg
Answer:
The number of protons in an atom is different than the atom's total mass.
Explanation:
Mendeleev had presented the first structured periodic table in 1869. But, in 1913, Henry Moseley developed the modern periodic table. The crucial difference between the two periodic tables is that Mendeleev's periodic table is generated on the basis of the atomic masses of chemical elements while the chemical element's atomic numbers were the main focus of Moseley's periodic table. There were just 56 chemical elements in Mendeleev's periodic table. On the other hand, 74 chemical elements are presented in Moseley's periodic table.
Any change in the magnitude or direction of velocity is "acceleration".
Answer:
"The lowest energy configuration for an atom is the one having the maximum number of unpaired electrons allowed by thePauli principle in a particular set of degenerate orbitals" is known as Hund's rule.
Explanation:
Pauli's Exclusion principle states that "two or more electrons can not have the same values of the set of all quantum numbers in an atom or a molecule".
So, the given statement <em>is not</em> Pauli's Exclusion principle.
Hund's rule states that the lowest energy configuration of an atom is that one in which the maximum number of parallel spins of the electrons are present.
The given statement is "The lowest energy configuration for an atom is the one having the maximum number of unpaired electrons allowed by the Pauli principle in a particular set of degenerate orbitals", which is same as the Hund's rule.
Thus, the given statement is Hund' rule.
Heisenberg's uncertainty principle states that the momentum and position of an object can not be measured exactly at the same time.
So, the given statement <em>is not</em> Heisenberg's uncertainty principle.
Aufbau principle tells about the filling of the electrons in subshells of an atom. Therefore, the given statement <em>is not </em>Aufbau principle.