Answer:
the aircraft must travel at a speed of <em>73.4 m/s</em> in order to create the ideal lift.
Explanation:
We will use Bernoulli's theorem in order to determine the pressure lift:
ΔP = 1/2 (ρ)(v₂² - v₁²)
the generated pressure lift is ΔP = 1000 N/m²
Therefore,
1000 = 1/2(ρ)(v₂² - v₁²)
v₂² - v₁² = 2000 / ρ
v₂² = (2000 N/m² / 1.29 kg/m³) + (62 m/s)²
v₂ = √[ (2000 N/m² / 1.29 kg/m³) + (62 m/s)² ]
<em>v₂ = 73.4 m/s </em>
<em></em>
Therefore, the aircraft must travel at a speed of <em>73.4 m/s</em> in order to create the ideal lift.
To keep<span> noise from entering your space, look for </span>sound<span> blockers</span>
Answer:
1.5 m
Explanation:
Length. L = 12 m
Width, W = 16 m
Area, A = 12 x 16 = 192 m^2
Let the width of pavement be d.
The new length, L' = 12 + 2d
the new width, W' = 16 + 2d
New Area, A' = L' x W' = (12 + 2d)(16 + 2d) = 192 + 56 d + 4d^2
Difference in area = A' - A
285 = 192 + 56 d + 4d^2 - 192
93 = 56 d + 4d^2
4d^2 + 56 d - 93 = 0

\
d = 1.5 m
Thus, the width of the pavement is 1.5 m.
Answer:
add 44m/s and 22m/s then multiply it by 11
Explanation: