Answer:
L= 50000 lb
D = 5000 lb
Explanation:
To maintain a level flight the lift must equal the weight in magnitude.
We know the weight is of 50000 lb, so the lift must be the same.
L = W = 50000 lb
The L/D ratio is 10 so
10 = L/D
D = L/10
D = 50000/10 = 5000 lb
To maintain steady speed the thrust must equal the drag, so
T = D = 5000 lb
Answer:
International Building Code (IBC)
Explanation:
Answer:
work done = 48.88 ×
J
Explanation:
given data
mass = 100 kN
velocity = 310 m/s
time = 30 min = 1800 s
drag force = 12 kN
descends = 2200 m
to find out
work done by the shuttle engine
solution
we know that work done here is
work done = accelerating work - drag work - descending work
put here all value
work done = ( mass ×velocity ×time - force ×velocity ×time - mass ×descends ) 10³ J
work done = ( 100 × 310 × 1800 - 12×310 ×1800 - 100 × 2200 ) 10³ J
work done = 48.88 ×
J
Answer:
The correct answer is option 'B': Load is far from fulcrum and the effort is applied near the fulcrum
Explanation:
A lever works on the principle of balancing of torques. The torque about the fulcrum by the load should be equal to the torque by the applied effort. Since we know that the torque is proportional to both the force and the distance it is applied from the distance from the axis of rotation. A lever is used when we need to lift a heavy load by utilizing this effect of the lever arm.
A mechanical disadvantage occurs when we are not able to lift the weight easily due to the fact we apply effort near the fulcrum.
Attached is the solution to the above question.