Answer:
Answer below :)
Explanation:
<u>SIZE OF THEODOLITE:</u> A theodolite is designated by diameter of the graduated circle on the lower plate. The common sizes are 8 cm to 12 cm while<em> 14 cm</em> to <em>25 cm</em> instrument are used for triangulation work.
Answer: d) Prandtl number
Explanation: Prandtl number is basically defined as the ratio between the fluid's viscosity to the thermal conductivity.It doesn't have any sort of dimension. The fluids which are discovered with the small Prandtl numbers are considered as good fluids as they have a smooth rate of flow and as the number increases the fluid are not considered as reliable. Thus,option (d) is the correct option.
Answer:
x=2.19in
Explanation:
This is the equation that relates the force and displacement of a spring
F=Kx
m=mass=12.5lbx1slug/32.14lb=0.39slug
F=mg=0.39*32.2=12.52Lbf
then we calculate the spring count in lbf / ft
K=F/x
K=5.7lbf/1in=5.7lbf/in=68.4lbf/ft
Finally we calculate the displacement with the initial equation
X=F/k
x=12.52/68.4=0.18ft=2.19in
Answer:
The coefficient of linear expansion of the metal is ∝ = 2.91 x 10⁻⁵ °C⁻¹.
Explanation:
We know that Linear thermal expansion is represented by the following equation
Δ L = L x ∝ x Δ T ---- (1)
where Δ L is the change in length, L is for length, ∝ is the coefficient of linear expression and Δ T is the change in temperature.
Given that:
L = 0.6 m
T₁ = 15° C
T₂ = 37° C
Δ L = 0.28 mm
∝ = ?
Solution:
We know that Δ T = T₂ ₋ T₁
Putting the values of T₁ and T₂ in above equation, we get
Δ T = 37 - 15
Δ T = 22 °C
Also Δ L = 0.28 mm
Converting the mm to m
Δ L = 0.00028 m
Putting the values of Δ T, Δ L, L in equation 1, we get
0.00028 = 0.6 x ∝ x 22
Rearranging the equation, we get
∝ = 0.00028 / (0.6 x 16)
∝ = 0.00028 / 13.2
∝ = 2.12 x 10⁻⁵ °C⁻¹
Answer:
Steel and wood
Explanation:
For a material to resist stress and vibration, it must have high ductility, which is the ability to undergo large deformations and tension. Modern buildings are often constructed with structural steel, a component that comes in a variety of shapes and allows buildings to bend without breaking.