The acceleration of the crate after it begins to move is 0.5 m/s²
We'll begin by calculating the the frictional force
Mass (m) = 50 Kg
Coefficient of kinetic friction (μ) = 0.15
Acceleration due to gravity (g) = 10 m/s²
Normal reaction (N) = mg = 50 × 10 = 500 N
<h3>Frictional force (Fբ) =?</h3>
Fբ = μN
Fբ = 0.15 × 500
<h3>Fբ = 75 N</h3>
- Next, we shall determine the net force acting on the crate
Frictional force (Fբ) = 75 N
Force (F) = 100 N
<h3>Net force (Fₙ) =?</h3>
Fₙ = F – Fբ
Fₙ = 100 – 75
<h3>Fₙ = 25 N</h3>
- Finally, we shall determine the acceleration of the crate
Mass (m) = 50 Kg
Net force (Fₙ) = 25 N
<h3>Acceleration (a) =?</h3>
a = Fₙ / m
a = 25 / 50
<h3>a = 0.5 m/s²</h3>
Therefore, the acceleration of the crate is 0.5 m/s²
Learn more on friction: brainly.com/question/364384
Temperature doesn't really affect solubility on liquids so it can only be D besides it's already a liquid....
Answer: 0 degrees Celsius or 32 degrees Fahrehit
Explanation:

Here's a explanation!
Let's solve your equation step-by-step.


Step 1: Multiply both sides by x.


(Divide both sides by 4).


Take the root.
ANSWER!

Hopefully, this helps you!!

Answer:
The correct option is : Their atoms have eight electrons in their valence shells, so noble gases are very unreactive.
Explanation:
The octet rule state that atoms tend to complete their last energy levels with eight electrons, and that this configuration make them very stable and unreactive.
Noble gases are characterized as unreactive atoms, and this is associated with the fact that they have a complete valence shell, it means that they have eight electrons on it (they follow the octet rule).
Atoms with less electrons on their valence shells tend to react with another atom, forming bonds, to complete their valence shells (with eight electrons).