Answer is: solution of electrolyte will have lower freezing point than solution of nonelectrolyte.
This is because salt solution has more particles in of sodium chloride (sodium and chlorine ions) than in same concentration of glucose. Electrolytes better separates into particles in water because of their ionic bond.<span>
</span>
Answer:
The correct answer is : 'the concatenation of NO will increase'.
Explanation:
Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
If the temperature is increased, so according to the Le-Chatlier's principle , the equilibrium will shift in the direction where increase in temperature occurs.

As, this is an endothermic reaction, increasing temperature will add more heat to the system which move equilibrium in the forward reaction with decrease in temperature. Hence, the equilibrium will shift in the right direction.
So, the concatenation of NO will increase.
The radius of the anion is 7.413 nm
<h3>How to calculate the force of attraction between charges</h3>
The force of attraction (F) is given by the formula:
- F = (1/4π∈r²)(Zc*e)(Za*e)
where:
∈ = permittivity of free space = 8.85*10⁻¹⁵ F/m
Zc = charge on the cation = +2
Zc = charge on the anion = -2
e = charge on an electron = 1.602 * 10⁻¹⁹ C
r = interionic distance
r = rc + ra
where rc and ra are the radius of the cation and anion respectively
F = 1.64 * 10⁻⁸ N
Therefore based on the equation of force of attraction:
1.64 *10⁻⁸ = [1/4π(8.85*10⁻¹⁵)r²](2 * 1.602*10⁻¹⁹)²
r² = 5.63 * 10⁻¹⁷
r = 7.50 nm
Since r = rc + ra
where rc = 0.087 nm
thus, ra = r - rc = 7.50 - 0.087
ra = 7.413 nm
Therefore, the radius of the anion is 7.413 nm
Learn more about ionic radius at: brainly.com/question/2279609
Answer:
Glucose and oxygen are required for cellular respiration. As the law of conversation states, in a biochemical reaction, mass is conserved. The mass of hydrogen in the glucose is therefore conserved in the water molecules products.