Answer:
27°C or 300K
Explanation
We were told that the pressureof the system decreased by 10 times implies that P2= P1/10
Where P2=final pressure
P1= initial pressure
Wew were also told that the volume of the system increased by 5 times this implies that V2= 5×V1
Where T2= final temperature =-123C= 273+(-123C)=150K
T1= initial temperature
But from gas law
PV=nRT
As n and R are constant
P1V1/T1 = P2V2/T2
T1= P1V1T2/P2V2
T1=2×T2
T1=2×150
T1=300K
=300-273
=27°C
the initial temperature (°C) of a system is 27°C
Answer:
Explanation:
To neutralize a chemical to a pH of 7 before discarding, one would require a significant amount of acids or bases. Our best guess is that the solution in itself is either an acid or a base. Neutralization with the right amount of a proper reagent can bring the pH of the solution to a neutral 7.
If the solution has a pH originally greater than 7, add a corresponding amount of acid to it. This will reduce the concentration and bring it to a neutral point. Provided one is dealing with a solution of pH less than 7, simply add a base to to bring the solution to neutrality.
Answer:
Darmstadtium
Explanation:
An element with the electronic configuration 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s²4d¹⁰5p⁶6s²4f¹⁴5d¹⁰6p⁶7s²5f¹⁴6d⁸ has 110 electrons in its electron shells.
Since the element is a neutral atom, this number is also equal to its atomic number. Therefore, its atomic number is 110.
The element in the period table that has an atomic number of 110 is Darmstadtium, a d-block element, thus a transittion metal. It also belong to period 7 in the Periodic table of elements.
How will what move? What, exactly, are you asking?