1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastaziya [24]
3 years ago
7

A 0.6 kg block attached to a spring of force constant 13.6 N/m oscillates with an amplitude of 9 cm. Find the maximum speed of t

he block. Answer in units of m/s. 003 (part 2 of 4) 10.0 points Find the speed of the block when it is 4.5 cm from the equilibrium position. Answer in units of m/s. 004 (part 3 of 4) 10.0 points Find its acceleration at 4.5 cm from the equilibrium position. Answer in units of m/s 2 . 005 (part 4 of 4) 10.0 points Find the time it takes the block to move from x = 0 to x = 4.5 cm. Answer in units of s.
Physics
1 answer:
mash [69]3 years ago
7 0

Answer:

1) 0.43 meters per second

2) 0.21 meters per second

3) 1.02 \frac{m}{s^{2}}

4) 0.66 seconds

Explanation:

part 1

By conservation of energy, the maximum kinetic energy (K) of the block is at equilibrium point where the potential energy is zero. So, at the equilibrium kinetic energy is equal to maximum potential energy (U):

K=U

\frac{mv^2}{2}=\frac{kx_{max}^2}{2}

With m the mass, v the speed, k the spring constant and xmax the maximum position respect equilibrium position. Solving for v

v=\sqrt{\frac{kx_{max}^2}{m}}=\sqrt{\frac{(13.6)(0.09m)^2}{0.6}}=0.43\frac{m}{s}

part 2

Again by conservation of energy we have kinetic energy equal potential energy:

\frac{mv^2}{2}=\frac{kx_{max}^2}{2}=

v=\sqrt{\frac{kx_{max}^2}{m}}=\sqrt{\frac{(13.6)(0.045m)^2}{0.6}}=0.21\frac{m}{s}

part 3

Acceleration can be find using Newton's second law:

F=ma

with F the force, m the mass and a the acceleration, but elastic force is -kx, so:

-kx=ma

a= -\frac{kx}{m}=-\frac{(13.6)(0.045)}{0.6}=-1.02\frac{m}{s^{2}}

part 4

The period of an oscillator is the time it takes going from one extreme to the other one, that is going form 4.5 cm to -4.5 cm respect the equilibrium position. That period is:

T=2\pi\sqrt{\frac{m}{k}}=T=2\pi\sqrt{\frac{0.6}{13.6}}=1.32s

So between 0 and 4.5 cm we have half a period:

t=\frac{T}{2}=0.66s

You might be interested in
You are walking from your math class to your science class. You are carrying books
kolezko [41]

Answer:

1800J

Explanation:

Given parameters:

Weight of the book  = 20N

Total distance covered  = 45m + 15m + 30m  = 90m

Unknown:

Total work performed on the books  = ?

Solution:

To solve this problem we must understand that work done is the force applied to move a body through a certain distance.

So;

    Work done  = Force x distance

  Work done  = 20 x 90  = 1800J

8 0
3 years ago
If the only forces acting on a 2.0kg mass are F1 = (3i-8j)N and F2 = (5i+3j)N, what is the magnitude of the acceleration of the
belka [17]

Answer: 4.7m/s²

Explanation:

According to newton's first law,

Force = mass × acceleration

Since we are given more the one force, we will take the resultant of the two vectors.

Mass = 2.0kg

F1+F2 = (3i-8j)+(5i+3j)

Adding component wise, we have;

F1+F2 = 3i+5i-8j+3j

F1+F2 = 8i-5j

Resultant of the sum of the forces will be;

R² = (8i)²+(-5j)²

Since i.i = j.j = 1

R² = 8²+5²

R² = 64+25

R² = 89

R = √89

R = 9.4N

Our resultant force = 9.4N

Substituting in the formula

F = ma

9.4 = 2a

a = 9.4/2

a = 4.7m/s²

Therefore, magnitude of the acceleration of the particle is 4.7m/s²

3 0
3 years ago
420 hg = _____ cg help please
kondaur [170]
4200000 is your answer hope this helps
4 0
3 years ago
Read 2 more answers
Select the correct answer. An airplane is flying at a constant speed in a positive direction. It slows down when it approaches t
Triss [41]

An airplane is flying at a constant speed in a positive direction. It slows down when it approaches the airport where it's going to land. this is an example of negative acceleration (D).

7 0
3 years ago
A dumbell has a mass of 95 kg. What force must be applied to accelerate it upward at 2.2 m/s2?
Sveta_85 [38]
A :-) F = ma
Given - m = 95 kg
a = 2.2 m/s^2
Solution -
F = ma
F = 95 x 2.2
F = 209

.:. The force is 209 N
5 0
2 years ago
Other questions:
  • What are the formulas to calculate acceleration A. velocity and time B. displacement and time C. Change in distance and time D.
    15·1 answer
  • How is speed determined?
    13·1 answer
  • A "8" grams box is pushed with a force of 100 N for 1m whereas opposing force is 10 N. A) Find the net work done on the box. B)
    13·1 answer
  • After a car accident, the skid marks for one car measured 190 feet. Use the formula s = √ 24 d , where d represents the length o
    8·1 answer
  • A thin spherical shell with radius R1 = 4.00 cm is concentric with a larger thin spherical shell with radius R2 = 6.00 cm . Both
    12·1 answer
  • Which of the following are capital cities in the Caribbean? Lima La Habana San Juan San Jos Guinea Ecuatorial
    11·1 answer
  • A soccer ball is released from rest at the top of a grassy incline. After 4.1 seconds, the ball travels 43 meters and 1.0 s afte
    6·1 answer
  • Imagine that you have three circuit elements: a single bulb, a piece of wire, and a battery. You start by keeping these three el
    10·1 answer
  • Which of the following statements best describes an electromagnetic wave with a short wavelength?
    6·2 answers
  • A stomp rocket takes 3.1 seconds to reach its maximum height.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!