Answer:
Final pH: 9.49.
Round to two decimal places as in the question: 9.5.
Explanation:
The conjugate of B is a cation that contains one more proton than B. The conjugate of B is an acid. As a result, B is a weak base.
What's the pKb of base B?
Consider the Henderson-Hasselbalch equation for buffers of a weak base and its conjugate acid ion.
.
.
.

.
What's the new salt-to-base ratio?
The 0.005 mol of HCl will convert 0.005 mol of base B to its conjugate acid ion BH⁺.
Initial:
;
.
After adding the HCl:
;
.
Assume that the volume is still 0.5 L:
.
.
What's will be the pH of the solution?
Apply the Henderson-Hasselbalch equation again:
![\displaystyle \text{pOH} = \text{pK}_b + \log{\frac{[\text{Salt}]}{[\text{Base}]}} = 4.64613 + \log{\frac{0.760}{1.04}} = 4.50991](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Ctext%7BpOH%7D%20%3D%20%5Ctext%7BpK%7D_b%20%2B%20%5Clog%7B%5Cfrac%7B%5B%5Ctext%7BSalt%7D%5D%7D%7B%5B%5Ctext%7BBase%7D%5D%7D%7D%20%3D%204.64613%20%2B%20%5Clog%7B%5Cfrac%7B0.760%7D%7B1.04%7D%7D%20%3D%204.50991)
.
The final pH is slightly smaller than the initial pH. That's expected due to the hydrochloric acid. However, the change is small due to the nature of buffer solutions: adding a small amount of acid or base won't significantly impact the pH of the solution.
Answer:
V₂ = 4.00 L
Explanation:
Given that:
Volume (v1) = 6.00 L
Temperature (T1) = 300 K
Pressure (P1) = 1.00 atm
VOlume (V2) = unknown???
Temperature (T2) = 600 K
Pressure (P2) = 3.00 atm
Using combined gas law equation:



200 = 50V₂
V₂ = 200/50
V₂ = 4.00 L
Answer:
If the temperature and volume ot a gas increases, the r.m.s. velocity of the molecules in the gas will be 2 times the original r.m.s. molecular velocity.
If T doubles while V is held constant, the new net internal energy of the gas will be 2 times the original internal energy of the gas.
Explanation:
Temperature and root mean square velocity are directly proportional to one anoth. If the temperature increases, root mean square velocity also increases and vice versa, while temperature is also directly proportional to the internal energy of the gas molecules, higher the temperature, higher will be the internal energy and lower the temperature so internal energy will be decreased.
A substance that has no specific volume changes to a substance that has a specific volume.