Its Concentration, diffusion, a selectively Premable membrane, osmosis,diffusion, a selectively permeable membrane, osmosis, and diffusion
Answer:
When one desires to remove debris from the garden then a soil sifter can be used as a beneficial tool. Based on the needs, it can be of different kinds. A landscaper may sift soil that they use at the time of constructing gardens due to many reasons:
1. The soil becomes aerated, and thus, turn soft and easy to work upon.
2. Sifting the soil makes the work of withdrawing undesired substances from the soil easy.
3. It helps the plants to grow much better as the roots possess the tendency to penetrate more easily through the soil.
4. The soil becomes healthy due to shifting, thus, helps in producing a beautiful and healthy landscape.
Atoms are divisible contrary to the early beliefs that the smallest "indivisible" matter is an atom. When an atom loses its identity it means that they are divisible. Atoms chemically react with other kinds of atoms thus changing their activity.
They certainly are not that important to our lives, but it’s good to know :)
Nonpolar covalent bonds are chemical bonds where two atoms share a pair of electrons with each other and the electronegativities of the two atoms are equal. An example is methane. It has four carbon-hydrogen single covalent bonds. These bonds are nonpolar because the electrons are shared equally.
Answer: The equilibrium constant for the overall reaction is 
Explanation:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios.
a) 
![K_a=\frac{[PCl_3]}{[Cl_2]^{\frac{3}{2}}}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BPCl_3%5D%7D%7B%5BCl_2%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D)
b) 
![K_b=\frac{[PCl_5]}{[Cl_2]\times [PCl_3]}](https://tex.z-dn.net/?f=K_b%3D%5Cfrac%7B%5BPCl_5%5D%7D%7B%5BCl_2%5D%5Ctimes%20%5BPCl_3%5D%7D)
For overall reaction on adding a and b we get c
c) 
![K_c=\frac{[PCl_5]}{[Cl_2]^\frac{5}{2}}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BPCl_5%5D%7D%7B%5BCl_2%5D%5E%5Cfrac%7B5%7D%7B2%7D%7D)
![K_c=K_a\times K_b=\frac{[PCl_3]}{[Cl_2]^{\frac{3}{2}}}\times \frac{[PCl_5]}{[Cl_2]\times [PCl_3]}](https://tex.z-dn.net/?f=K_c%3DK_a%5Ctimes%20K_b%3D%5Cfrac%7B%5BPCl_3%5D%7D%7B%5BCl_2%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%5Ctimes%20%5Cfrac%7B%5BPCl_5%5D%7D%7B%5BCl_2%5D%5Ctimes%20%5BPCl_3%5D%7D)
The equilibrium constant for the overall reaction is 