Answer:
The evolutionary process at work is best described by option <em>B. gene flow</em>
Explanation:
<em>Gene flow </em>also known as migration is any movement of individuals, and/or the genetic material they carry, from one population to another. If gene versions are carried to a population where those gene versions previously did not exist, gene flow can be a very important source of genetic variation. In this case, the nearby population <em>migrates </em>to the mole population. The diagram is a good description of the <em>Gene flow </em>process.
Answer:
pH = 10
The solution is basic.
Explanation:
A solution contains 1 × 10⁻⁴ M OH⁻ ions. First, we will calculate the pOH.
pOH = -log [OH⁻]
pOH = -log 1 × 10⁻⁴
pOH = 4
We can find the pH of the solution using the following expression.
pH + pOH = 14.00
pH = 14.00 - pOH = 14.00 - 4 = 10
Since the pH > 7, the solution is basic.
Answer:
The answer to your question is 100.8 g
Explanation:
Data
mass of Barium chloride = 90 g
mass of Barium sulfate = ?
Balanced chemical reaction
BaCl₂ + H₂SO₄ ⇒ BaSO₄ + 2HCl
Process
1.- Calculate the molar mass of BaCl₂ and BaSO₄
BaCl₂ = 137.3 + (2 x 35.5) = 208.3g
BaSO₄ = 137.3 + 32 + (16 x 4) = 233.3g
2.- Use proportions to find the mass of BaSO₄
208.3 g of BaCl₂ --------------------- 233.3 g of BaSO₄
90 g of BaCl₂ --------------------- x
x = (90 x 233.3) / 208.3
x = 20997/ 208.3
x = 100.8 g
3.- Conclusion
There will be produced 100.8 g of BaSO₄
First let us determine the electronic configuration of
Bromine (Br). This is written as:
Br = [Ar] 3d10 4s2 4p5
Then we must recall that the greatest effective nuclear
charge (also referred to as shielding) greatly increases as distance of the
orbital to the nucleus also increases. So therefore the electron in the
farthest shell will experience the greatest nuclear charge hence the answer is:
<span>4p orbital</span>
Explanation:
Higher the frequency smaller will be the wavelength. Higher frequency have shorter wavelength and lower frequency waves have larger wavelength. Also, Beats are formed by the superposition of two waves with slightly different frequencies but with similar amplitudes. In time, waves switch between constructive interference and disruptive interference, giving the resultant wave a time-varying amplitude.