Answer:
6.0 m/s
Explanation:
According to the law of conservation of energy, the total mechanical energy (potential, PE, + kinetic, KE) of the athlete must be conserved.
Therefore, we can write:

or

where:
m is the mass of the athlete
u is the initial speed of the athlete (at the bottom)
0 is the initial potential energy of the athlete (at the bottom)
v = 0.80 m/s is the final speed of the athlete (at the top)
is the acceleration due to gravity
h = 1.80 m is the final height of the athlete (at the top)
Solving the equation for u, we find the initial speed at which the athlete must jump:

The force result in stretching the spring 10.0 centimeters is 2.5N.
<h3>
What is Hooke's law?</h3>
If a spring is stretched from its equilibrium position, then a force with magnitude proportional to the increase in length from the equilibrium length is pulling each end.
F = kx
where k is the proportionality constant called the spring constant or force constant.
Up to a point, the elongation of a spring is directly proportional to the force applied to it. Once you extend the spring more than 10.0 centimeters, however, it no longer follows that simple linear rule.
Let the spring constant be very low 0.04N/m
The force applied is
F = 10 cm / 0.04
F = 0.1 m / 0.04
F = 2.5 N
Thus, the force result in stretching the spring 10cm is 2.5 N.
Learn more about hooke's law.
brainly.com/question/13348278
#SPJ1
Answer:
12.5
Explanation:
Pressure: Force/Area = 650/52
=12.5
The answer of this question would be D