In every 100g of that compund there is 50.84 g of C, 8.53 g H and (100-59.37) g = 40.63 g of O.
Step 1: Convert each element's mass in moles. To do that we need to divide each element's mass by their respective molar mass.
For Carbon.

For Hydrogen.

For Oxygen.

Step 2: Divide each of the numbers by the smallest number.
For Carbon.

For Hydrogen.

For Oxygen.

Step 3: So the empirical formula will be.
But using decimal will be messy. So we multiply the numbers by 3. The right empirical formula will be.
I think it’s D.
sorry if it’s wrong
Answer: 8.7 grams
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:


As oxygen is in excess, Aluminium is the limiting reagent and limits the formation of products.
According to stoichiometry:
4 moles of aluminium give = 2 moles of 
Thus 0.17 moles of aluminium give=
Mass of 
Thus the mass of
is 8.7 grams
Because the older cells will not be able to function properly without the new cells taking over them. :)
Answer:
E = 147000 J
Explanation:
Given that,
The mass of meteor, m = 50 kg
The altitude of the meteor, h = 300 m
We need to find the potential energy of the meteor. The formula for the potential energy is given by :

Put all the values,

So, the required potential energy is equal to 147000 J.