Answer:

Explanation:
Given:
Length of a rope,
Position of Canary on the rope from one end, 
Position of Grackle on the rope from another end, 
Tension in the rope, 
linear mass distribution on the rope, 
We have for the speed of wave on the string:



<em>For canary to be undisturbed we need a node at this location.</em>
<em>Also, at the end close to Canary there must be a node to avoid any change in pattern of vibration.</em>
So,
the distance between Canary and the closer end must be equal to half the wavelength.


∴Wavelength of wave to be produced = 20 m. This will give us nodes at the multiples of 10 and anti-nodes at the multiples of 5.
Now, frequency:



Answer:
The right answer is "1.369 m/s²".
Explanation:
The given values are:
Distance (s)
= 260 m
Initial speed (u)
= 26 m/s
Reaction time (t')
= 0.51 s
During reaction time, the distance travelled by locomotive will be:
⇒ 


Remained distance between locomotive and car:
⇒ 


Now,
The final velocity to avoid collection is, V = 0 m/s
From third equation of motion:
⇒ 
On putting the estimated values, we get
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
Gallium is a chemical element with symbol Ga and atomic number 31. Elemental gallium does not occur in free form in nature, but as the gallium(III) compounds that are in trace amounts in zinc ores and in bauxite.
Answer:
8.333*10^-6 ohms
Explanation:
Resistivity of a material is expressed as;
p = RA/l
R is the resistance of the material
A is the cross sectional area
l is the length of the material
Given
R = 5 ohms
A = 0.5mm^2
A = 5 * 10^-7m^2
l = 30cm = 0.3m
Substitute into the formula;
p = (5 * 5 * 10^-7m^2)/0.3
p = 25 * 10^-7/0.3
p = 0.0000025/0.3
p = 8.333*10^-6
Hence its resistivity at 20 degrees Celsius is 8.333*10^-6 ohms
Answer: The first answer for the first problem, and the 2nd answer for the second problem
Explanation: For the first one, if it is absolute zero, the molecules would not move at all.
For the second one, the temperature of the sample will increase due to the movement.