1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Karo-lina-s [1.5K]
3 years ago
7

Psychological profiling is also known as criminal profiling. True or False?

Physics
2 answers:
Nikolay [14]3 years ago
8 0
So my opinion that is false bc. the psychological profiling not is necessary being as criminal profiling ,the criminal mean a greater,intensive word in the way of ,,killer" ,when the ,,psychological" profile is total different way 

hope helped 
Kryger [21]3 years ago
6 0
<span> true, psychological profiling is also known as criminal profiling </span>
You might be interested in
Two runners start at the same point on a straight track. The first runs with constant acceleration so that he covers 98 yards in
charle [14.2K]

Answer:

94.13 ft/s

Explanation:

<u>Given:</u>

  • t = time interval in which the rock hits the opponent = 10 s - 5 s = 5 s
  • s = distance to be moved by the rock long the horizontal = 98 yards
  • y = displacement to be moved by the rock during the time of flight along the vertical = 0 yard

<u>Assume:</u>

  • u = magnitude of initial velocity of the rock
  • \theta = angle of the initial velocity with the horizontal.

For the motion of the rock along the vertical during the time of flight, the rock has a constant acceleration in the vertically downward direction.

\therefore y = u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow 0 = u\sin \theta 5 +\dfrac{1}{2}(-9.8)\times 5^2\\\Rightarrow u\sin \theta 5 =\dfrac{1}{2}(9.8)\times 5^2......(1)\\

Now the rock has zero acceleration along the horizontal. This means it has a constant velocity along the horizontal during the time of flight.

\therefore u\cos \theta t = s\\\Rightarrow u\cos \theta 5 = 98.....(2)\\

On dividing equation (1) by (2), we have

\tan \theta = \dfrac{25}{20}\\\Rightarrow \tan \theta = 1.25\\\Rightarrow \theta = \tan^{-1}1.25\\\Rightarrow \theta = 51.34^\circ

Now, putting this value in equation (2), we have

u\cos 51.34^\circ\times  5 = 98\\\Rightarrow u = \dfrac{98}{5\cos 51.34^\circ}\\\Rightarrow u =31.38\ yard/s\\\Rightarrow u =31.38\times 3\ ft/s\\\Rightarrow u =94.13\ ft/s

Hence, the initial velocity of the rock must a magnitude of 94.13 ft/s to hit the opponent exactly at 98 yards.

3 0
3 years ago
What rock type would most likely be found in the location marked by the black rectangle in the diagram below?
pychu [463]

There is no diagram below so I can't answer the question

5 0
3 years ago
Read 2 more answers
How do you calculate the wavelength?
algol13
Wavelength is defined as distance between two troughs or two crests !!

so in this wavelength is 4 metres !!
3 0
3 years ago
Read 2 more answers
If we double the mass of the sun, what would happen to the gravitational force between the sun and earth?
Sphinxa [80]
It would increase
because the force is directly proportional to the Value of masses given
4 0
4 years ago
Assume: The bullet penetrates into the block and stops due to its friction with the block. The compound system of the block plus
tino4ka555 [31]

Answer:

1)4.7334J

2)225.4m/s

Explanation:

v= the Velocity of both the bullet and the block after collision=?

H= Height of the bullet along circular arc= 10cm=0.1m

g= acceleration due to gravity= 9.81m/s^2

R= Radius of the circular arc= 18cm= 0.18m

m= Mass of the bullet= 30g= 0.03kg

M= Mass of the block = 4.8 kg

Using the law of conservation of energy

Potential energy of the system= Kinectic energy of the system

1/2 mv^2= mgh..............eqn(1)

But we have two mass m and M

We can write eqn(1) as

0.5(m+M)v^2= (m+M)gh ...........eqn(2)

If we make "v" subject of the formula we have

v = √2gh

Then substitute the values we have

= √2 x 9.81 x 0.1 = 1.40m/s

1) We can now calculate the total energy of the system after collision as

KE = 1/2(m+M)v^2

= 1/2 x (0.03+4.8) x (1.40)^2

KE = 4.7334J

Hence, the total energy of the composite system at any time after the collision is 4.7334J

2)to determine the initial velocity of the bullet.

From law of momentum conservation, which can be expressed as

m1u1+m2u2=(m1+m2)v

Where the initial Velocity of the bullet u1= ?

Final velocity of the bullet = 0

the Velocity of both the bullet and the block after collision=v= 1.40m/s

(0.03×u1) +(u×0)= (4.8+0.03)1.4

0.03u1=6.762

U1=225.4m/s

Hence, the initial velocity of the bullet is 225.4m/s

3 0
3 years ago
Other questions:
  • A car travelling at 40 m/s comes to a halt in 8 seconds. What is the car’s acceleration and how far does it travel while it is s
    11·1 answer
  • If you are given force and time, you can determine power if you can know...
    8·2 answers
  • The use of seat belts in cars has significantly reduced the number of crash
    12·1 answer
  • Which of the following did the doll experiment not suggest?
    12·2 answers
  • Which sequence shows the different types of electromagnetic waves arranged in an increasing order of their frequency?
    9·1 answer
  • Physical therapists know as you soak tired muscles in a hot tub, the water will cool down as you heat up. If a 67.9 kg person at
    7·1 answer
  • What are the two forces involved in an interaction called
    10·1 answer
  • French jrnf;kwnb;vnkj2wert
    13·1 answer
  • The shaded boxes contain the first half of four statements. The unshaded boxes
    15·1 answer
  • Disease, pathogen , host and infectious in a sentence
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!