1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Phantasy [73]
4 years ago
15

On a highway, a car is driven 80. kilometers

Physics
2 answers:
nydimaria [60]4 years ago
7 0

The average speed of the car for the entire trip can be calculate by using:

v=\frac{S}{t}

where S is the total distance covered by the car, and t is the total time taken.


The total distance travelled by the car is:

S=80 km+50 km+40 km=170 km

while the total time taken is:

t=1.00 h+0.50 h+0.50 h=2.00 h


so, the average speed of the car is:

v=\frac{S}{t}=\frac{170 km}{2.00 h}=85 km/h


so, the correct answer is (3) 85 km/h.

Bas_tet [7]4 years ago
4 0

The average speed of the car for entire trip is \boxed{85\text{ km/h}}.

Further Explanation:

Speed is the measure of a quantity of an object the tells how fast the object is moving in the other words we can define the speed that it is the distance covered by an body divided by the time taken to cover that distance. It is a quantity with only magnitude so it is a scalar quantity.

The average speed is defined as the sum of all the distance traveled by the body divided by the sum of time taken to travel that distance.

Given:

The distance travel by the car is 80\text{ km} for 1.00\text{ hours}.

The distance travel by the car is 50\text{ km} for 0.50\text{ hours}.

The distance travel by the car is 40\text{ km} for .

0.50\text{ hours}.

Concept:

The expression for the average can be written as:

S =\dfrac{{{\text{sum of distances }}}}{{{\text{sum of time}}}}    …… (1)

The distance travel by the car is 80\text{ km} for 1.00\text{ hours}, distance travel by the car is 50\text{ km} for 0.50\text{ hours} and distance travel by the car is 40\text{ km} for 0.50\text{ hours}.

The sum of the distance is:

\begin{aligned}D&=80{\text{ km}}+{\text{50 km}}+40{\text{ km}}\\&=170{\text{ km}}\end{aligned}

The sum of time taken to travel the distance is:

\begin{aligned}t&=1.00{\text{ h}} + 0.50{\text{ h}} + 0.50{\text{ h}}\\&=2.00{\text{ h}}\end{aligned}

Substitute 170\text{ km} for total distance and 2.00\text{ h} for total time in equation (1).

\begin{aligned}S&=\frac{{{\text{170 km}}}}{{2.00{\text{ h}}}}\\&=85{\text{ km/h}}\end{aligned}

Therefore, the average speed of the car for entire trip is \boxed{85\text{ km/h}}.

Learn more:

1. Find the net force. https://brainly.in/question/8668644

2. Find the velocity. https://brainly.in/question/4502003

3. Calculate average speed brainly.com/question/11597590

Answer Details:

Grade: Middle school

Subject: Physics

Chapter: Kinematics

Keywords:

Highway, car, driven, 80 km, 1.00 hour, 1.00 hr, 1.00 h, 50 km, 0.50 hour, 0.50 hr, 0.50 h, 50  km, average speed, entire, trip, 85 km/hr.

You might be interested in
Question 9 Unsaved
atroni [7]
3.8 is the smallest number because if you multiple the others would be large
4 0
3 years ago
A thin rod rotates at a constant angular speed. Consider the tangential speed of each point on the rod for the case when the axi
ASHA 777 [7]

Answer:

    v = R w    

With this expression we see that for each point at different radius the tangential velocity is different

Explanation:

They indicate that the angular velocity is constant, that is

            w = dθ / dt

Where θ is the radius swept angle and t the time taken.

The tangential velocity is linear or

           v = dx / dt

Where x is the distance traveled in time (t)

 

In the definition of radians

          θ = s / R

Where s is the arc traveled and R the radius vector from the pivot point, if the angle is small the arc (s) and the length (x) are almost equal

         θ = x / R

We substitute in the speed equation

         v = d (θ R) / dt

The radius is a constant for each point

         v = R dθ / dt

         v = R w

With this expression we see that for each point at different radius the tangential velocity is different

6 0
3 years ago
A billiard ball is dropped from a height of 64 feet. Use the position function s(t) = –16???? 2 + ????0???? + ????0 to answer th
Delicious77 [7]

Answer:

s(t) = -16*t^2 + 64

v(t) = -32*t

a(t) = -32 ft/s^2

v(t) = 64 ft/s ... At impact

Explanation:

Given:-

- The height of the billiard ball t = 0 , h = 64 ft.

- The position function of an object under gravity is given by:

                                    s(t) = -16*t^2 + v_o*t + s_o

Find:-

a. Determine the position function s(t),

b. the velocity function v(t),

c. the acceleration function a(t).

d. What is the velocity of the ball at impact?

Solution:-

- To determine the position function we must initialize our problem and use the given general equation.

- s(t) is the position of the billiard ball from the ground at time t. So when t = 0, then s(t) = h. Hence, we have:

                                  s(t) = s_o = h = 64 ft

- Similarly we know that v_o is the initial velocity of the ball. Since, the ball was dropped we say that the initial velocity v_o = 0. Hence, the position of the ball from ground is given by following expression:

                                  s(t) = -16*t^2 + 64  

- To find the velocity expression v(t) we will take the time derivative of the position expression s(t) as follows:

                                  v(t) = d s(t) / dt

                                  v(t) = -16*2*t + 0

                                  v(t) = -32*t ft/s

- Similarly, the expression for acceleration a(t) is given by the time derivative of the velocity expression v(t) as follows:

                                  a(t) = d v(t) / dt

                                  a(t) = -32*t

                                  a(t) = -32 ft/s^2

- The velocity of ball at impact can be determined by evaluating s(t) = 0 and find the value for time t. Then that time t can be substituted in the velocity expression v(t) for final velocity. Or we could use the following 3rd kinematic equation as follows:

                                 v(t)^2 - 0^2 = 2*a(t)*s_o

                                 v(t)^2 = 2*(32)*(64)

                                 v(t) = 64 ft/s

- The ball has a velocity of 64 ft/s at impact!

6 0
3 years ago
I need a correct answer plzzzzzzzzzzzzzzzzzzzz
olya-2409 [2.1K]

Answer:

option 1

Explanation:

i just used the SOH CAH TOA, and since the given is tan=opposite/adjacent, that should be the answer

4 0
4 years ago
Correct formula of Na(No3)2​
ehidna [41]

Answer:

NaNO3.

Explanation:

The Na ion has one positive charge and the NO3 ion has one negative charge so the correct formula is NaNO3.

4 0
3 years ago
Other questions:
  • . List five endothermic reactions that are going on around you.
    13·1 answer
  • White light is composed of all the colors of the visible light spectrum. The spectrum is usually said to consist of
    15·2 answers
  • Minerals that form from magma process will tend to form ?
    15·1 answer
  • A 1kg block of ice at 0o C falls into alake whose
    9·1 answer
  • What happens to the diffraction pattern when the number of lines per centimeter of a diffraction grating is increased?
    11·1 answer
  • An object is dropped at a height of 12 m from the ground. How fast is it moving just before it hits the ground?
    13·1 answer
  • Which statements can be supported by using a position-time graph? Check all that apply. A negative slope results when an individ
    13·2 answers
  • Critical reasoning: We also use simulation to understand how the software would behave in the event of potential collisions. Giv
    11·1 answer
  • How to find angular velocity of an object traveling at a constant speed.
    15·1 answer
  • How does the interstellar medium interact with stars?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!