Given:
The magnitude of each charge is q1 = q2 = 1 C
The distance between them is r = 1 m
To find the force when distance is doubled.
Explanation:
The new distance is

The force can be calculated by the formula

Here, k is the constant whose value is

On substituting the values, the force will be

Answer:

Explanation:
Given that
d= 1.5 in ( 1 in = 0.0254 m)
d= 0.0381 m
P= 75 hp ( 1 hp = 745.7 W)
P= 55927.5 W
N= 1800 rpm
We know that power P is given as

T=Torque
N=Speed

T=296.85 N.m
The maximum shear stress is given as



We know that 1 MPa =0.145 ksi

Answer:
stone A is diamond.
Explanation:
given,
Volume of the two stone = 0.15 cm³
Mass of stone A = 0.52 g
Mass of stone B = 0.42 g
Density of the diamond = 3.5 g/cm³
So, to find which stone is gold we have to calculate the density of both the stone.
We know,


density of stone A


density of stone B.


Hence, the density of the stone A is the equal to Diamond then stone A is diamond.
Answer:
Pressure on the molten rock lessens and the gases dissolved in rock can bubble and expand rapidly causing violent eruptions.
Explanation:
that's just how it works lol. hope this helps :]
Answer:
The answer to the question is
The ladybug begins to slide
Explanation:
To solve the question we assume that the frictional force of the ladybug and the gentleman bug are the same
Where the frictional force equals
= μ×N = m×g×μ
and the centripetal force is given by m·ω²·r
If we denote the properties of the ladybug as 1 and that of the gentleman bug as 2, we have
m₁×g×μ = m₁·ω²·r₁ ⇒ g×μ = ω²·r₁
and for the gentleman bug we have
m₂×g×μ = m₂·ω²·r₂ ⇒ g×μ = ω²·r₂
But r₁ = 2×r₂
Therefore substituting the values of r₁ =2×r₂ we have
g×μ = ω²·r₁ = g×μ = ω²·2·r₂
Therefore ω²·r₂ = 0.5×g×μ for the ladybug. That is the ladybug has to overcome half the frictional force experienced by the gentleman bug before it start to slide
The ladybug begins to slide