Answer:
the Hudson Bay was covered with alpine glaciers
Explanation:
During the last glacial period, large portions of North America were covered with ice. The majority of the ice was from the ice sheets that were covering Canada and the northern part of the United States, and the alpine glaciers on the mountain ranges. Hudson Bay was all frozen at this point of time. It was not covered with alpine glaciers though, instead it was covered with the ice of the extended ice sheets, with the ice cover reaching up to 2 km in thickness.
Answer: The energy from the sun passes through space in the form of invisible waves to the earth surface. It heats up the earth’s surface causing variation in climate.
Explanation:
The amount of incoming energy from the Sun decides the weather and climate of earth. If the energy that is incoming and outgoing on the earth, then climate is in equilibrium. The balance is depending on the scattering, absorption, reflection and transformation of energy.
The energy from sun passes through space and reaches the earth’s surface. On reaching surface, the solar energy warms the atmosphere releasing heat energy which gets transferred throughout the planets system by radiation, conduction and convection. Conduction happens in the atmosphere within first several millimeters close to the surface. This heated air expands as it is dense and rises causing transfer of heat to atmosphere through convection process. It results in formation of clouds.
The radiant energy from sun is transmitted via space in form of invisible waves. But much of the suns radiant energy, is transmitted back to atmosphere. The objects on earth like land, plants, animals absorb radiant energy as heat of which one third gets re-radiated back to atmosphere that is absorbed by carbon dioxide and water vapor. The atmosphere radiates heat energy back to earth increasing the earth temperature. This trapping of radiation is greenhouse effect.
The thermal energy obtained by convection currents are responsible for wind, cloud formation, and weather formation. The hydrosphere that comprises of 70% of earth’s surface absorbs solar energy.
On the basis of the above explanation is:
The energy from the sun passes through space in the form of invisible waves to the earth surface. It heats up the earth’s surface causing variation in climate.
Complete Question:
Given
at a point. What is the force per unit area at this point acting normal to the surface with
? Are there any shear stresses acting on this surface?
Answer:
Force per unit area, 
There are shear stresses acting on the surface since 
Explanation:
![\sigma = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right]](https://tex.z-dn.net/?f=%5Csigma%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2612%2613%5C%5C12%2611%2615%5C%5C13%2615%2620%5Cend%7Barray%7D%5Cright%5D)
equation of the normal,
![\b n = \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]](https://tex.z-dn.net/?f=%5Cb%20n%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C0%5C%5C%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
Traction vector on n, 
![T_n = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right] \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]](https://tex.z-dn.net/?f=T_n%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2612%2613%5C%5C12%2611%2615%5C%5C13%2615%2620%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C0%5C%5C%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
![T_n = \left[\begin{array}{ccc}\frac{23}{\sqrt{2} }\\0\\\frac{27}{\sqrt{33} }\end{array}\right]](https://tex.z-dn.net/?f=T_n%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B23%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C0%5C%5C%5Cfrac%7B27%7D%7B%5Csqrt%7B33%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)

To get the Force per unit area acting normal to the surface, find the dot product of the traction vector and the normal.


If the shear stress,
, is calculated and it is not equal to zero, this means there are shear stresses.

![\tau = [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - 28( (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z)\\\\\tau = [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - [ (28/ \sqrt{2} ) \b e_x + (28/ \sqrt{2}) \b e_z]\\\\\tau = \frac{-5}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{5}{\sqrt{2} } \b e_z](https://tex.z-dn.net/?f=%5Ctau%20%3D%20%20%5B%5Cfrac%7B23%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_x%20%2B%20%5Cfrac%7B27%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_y%20%2B%20%5Cfrac%7B33%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_z%5D%20-%2028%28%20%281%2F%20%5Csqrt%7B2%7D%20%29%20%5Cb%20e_x%20%2B%20%281%2F%20%5Csqrt%7B2%7D%29%20%5Cb%20e_z%29%5C%5C%5C%5C%5Ctau%20%3D%20%20%5B%5Cfrac%7B23%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_x%20%2B%20%5Cfrac%7B27%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_y%20%2B%20%5Cfrac%7B33%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_z%5D%20-%20%5B%20%2828%2F%20%5Csqrt%7B2%7D%20%29%20%5Cb%20e_x%20%2B%20%2828%2F%20%5Csqrt%7B2%7D%29%20%5Cb%20e_z%5D%5C%5C%5C%5C%5Ctau%20%3D%20%20%5Cfrac%7B-5%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_x%20%2B%20%5Cfrac%7B27%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_y%20%2B%20%5Cfrac%7B5%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_z)

Since
, there are shear stresses acting on the surface.
The force involved is = 25200 Newton
Given the values in the questions,
Mass = 1400 kg
Speed or velocity of the car = 27 m/s
Time is given = 1.5 seconds
According to the formula of force,
⇒ Force = Mass x Acceleration
⇒ Force = 1400 x Acceleration ----- equation 1
Now to calculate the value of acceleration we will use,
⇒ Acceleration = (Velocity or Speed) / Time
⇒ Acceleration = 27 / 1.5
⇒ Acceleration = 18 m/
Putting the value of acceleration in equation 1,
⇒ Force = 1400 x 18
⇒ Force = 25200 Newton
Therefore, the force involved is = 25200 Newton
To learn more about Force,
brainly.com/question/13191643
#SPJ4