1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Makovka662 [10]
3 years ago
12

What are the five blood serves in the body

Physics
1 answer:
nataly862011 [7]3 years ago
5 0
Arm legs nose headsssssssssss
You might be interested in
North America experienced all of the following during the last glacial period EXCEPT alpine glaciers covered the Rocky and Casca
Juli2301 [7.4K]

Answer:

the Hudson Bay was covered with alpine glaciers

Explanation:

During the last glacial period, large portions of North America were covered with ice. The majority of the ice was from the ice sheets that were covering Canada and the northern part of the United States, and the alpine glaciers on the mountain ranges. Hudson Bay was all frozen at this point of time. It was not covered with alpine glaciers though, instead it was covered with the ice of the extended ice sheets, with the ice cover reaching up to 2 km in thickness.

5 0
3 years ago
In complete sentences describe the energy flow between the Sun, the Earth, and space
agasfer [191]
Answer: The energy from the sun passes through space in the form of invisible waves to the earth surface. It heats up the earth’s surface causing variation in climate.
Explanation:
The amount of incoming energy from the Sun decides the weather and climate of earth. If the energy that is incoming and outgoing on the earth, then climate is in equilibrium. The balance is depending on the scattering, absorption, reflection and transformation of energy.
The energy from sun passes through space and reaches the earth’s surface. On reaching surface, the solar energy warms the atmosphere releasing heat energy which gets transferred throughout the planets system by radiation, conduction and convection. Conduction happens in the atmosphere within first several millimeters close to the surface. This heated air expands as it is dense and rises causing transfer of heat to atmosphere through convection process. It results in formation of clouds.
The radiant energy from sun is transmitted via space in form of invisible waves. But much of the suns radiant energy, is transmitted back to atmosphere. The objects on earth like land, plants, animals absorb radiant energy as heat of which one third gets re-radiated back to atmosphere that is absorbed by carbon dioxide and water vapor. The atmosphere radiates heat energy back to earth increasing the earth temperature. This trapping of radiation is greenhouse effect.
The thermal energy obtained by convection currents are responsible for wind, cloud formation, and weather formation. The hydrosphere that comprises of 70% of earth’s surface absorbs solar energy.
On the basis of the above explanation is:
The energy from the sun passes through space in the form of invisible waves to the earth surface. It heats up the earth’s surface causing variation in climate.
6 0
2 years ago
What is the force per unit area at this point acting normal to the surface with unit nor- Side View √√ mal vector n = (1/ 2)ex +
Mumz [18]

Complete Question:

Given \sigma = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right] at a point. What is the force per unit area at this point acting normal to the surface with\b n = (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z   ? Are there any shear stresses acting on this surface?

Answer:

Force per unit area, \sigma_n = 28 MPa

There are shear stresses acting on the surface since \tau \neq 0

Explanation:

\sigma = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right]

equation of the normal, \b n = (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z

\b n = \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]

Traction vector on n, T_n = \sigma \b n

T_n =  \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right] \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]

T_n = \left[\begin{array}{ccc}\frac{23}{\sqrt{2} }\\0\\\frac{27}{\sqrt{33} }\end{array}\right]

T_n = \frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z

To get the Force per unit area acting normal to the surface, find the dot product of the traction vector and the normal.

\sigma_n = T_n . \b n

\sigma \b n = (\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z) . ((1/ \sqrt{2} ) \b e_x + 0 \b  e_y +(1/ \sqrt{2}) \b e_z)\\\\\sigma \b n = 28 MPa

If the shear stress, \tau, is calculated and it is not equal to zero, this means there are shear stresses.

\tau = T_n  - \sigma_n \b n

\tau =  [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - 28( (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z)\\\\\tau =  [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - [ (28/ \sqrt{2} ) \b e_x + (28/ \sqrt{2}) \b e_z]\\\\\tau =  \frac{-5}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{5}{\sqrt{2} } \b e_z

\tau = \sqrt{(-5/\sqrt{2})^2  + (27/\sqrt{2})^2 + (5/\sqrt{2})^2} \\\\ \tau = 19.74 MPa

Since \tau \neq 0, there are shear stresses acting on the surface.

3 0
2 years ago
If a 2kg ball rolls down a ramp that is 15 meters long in 25 seconds, what is the
77julia77 [94]

Answer:

1.968504 ft/s

7 0
2 years ago
A family car has a mass of 1400 kg. In an accident it hits a wall and goes from a speed of 27 m/s to a standstill in 1. 5 second
madreJ [45]

The force involved is = 25200 Newton

Given the values in the questions,

Mass = 1400 kg

Speed or velocity of the car = 27 m/s

Time is given = 1.5 seconds

According to the formula of force,

⇒ Force = Mass x Acceleration

⇒ Force = 1400 x Acceleration ----- equation 1

Now to calculate the value of acceleration we will use,

⇒ Acceleration = (Velocity or Speed) / Time

⇒ Acceleration = 27 / 1.5

⇒ Acceleration = 18 m/s^{2}

Putting the value of acceleration in equation 1,

⇒ Force = 1400 x 18

⇒ Force = 25200 Newton

Therefore, the force involved is = 25200 Newton

To learn more about Force,

brainly.com/question/13191643

#SPJ4

8 0
1 year ago
Other questions:
  • what is the orbital speed for a satellite 3.5 x 10^8m from the center of mars? Mars mass is 6.4 x 10^23 kg
    10·1 answer
  • Why is it sensible on diagrams to represent a force by an arrow?
    6·1 answer
  • Why don't the present shapes of the continents fit perfectly into the supercontinent?
    7·1 answer
  • Which data set has the largest range?
    14·1 answer
  • In which scenario does radiation occur?
    15·2 answers
  • Chromosomes from the mother control whether a child is male or female. Please select the best answer from the choices provided.
    5·2 answers
  • Jada was walking home for 30 mins. How fast was she walking, if her house is 4 km away fron school?
    6·1 answer
  • If Earth were the size of a grape, how big would the Moon be? How far away would the Moon be from the Earth? How large would the
    6·1 answer
  • If a distant galaxy has a substantial redshift (as viewed from our galaxy), then anyone living in that galaxy would see a substa
    10·1 answer
  • Which model shows how a comet's tail changes during its orbit?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!