Let the left end A and the right end B.
Let w = the weight of the full beam.
0 = -(w/2)*(L/4) - (w)*(L/2) + Fa*L
Fa = [(w/2)*(L/4) + (w)*(L/2)]/L = w/8 + w/2 = 5/8*w = 5/8*m*g = 5/8*1800*9.81 Fa = 11036.25 N
Fa + Fb = w Fb = w - Fa = 1.8*(1800*9.81) - 11036.25 Fb = 20748.15 N
Answer:

Explanation:
We are asked to find the final velocity. We are given the acceleration, time, and initial velocity, so we can use the following kinematics formula.

In this formula,
is the final velocity,
is the initial velocity,
is the acceleration, and
is the time.
The bicycle has an initial velocity of 5.0 m *s⁻¹ or m/s, acceleration of 2 m/s², and a time of 5 seconds.

Substitute the values into the formula.

Solve inside the parentheses.

Add.

The units can also be written as:

The bicycle's final velocity is 15 meters per second.
Pretty sure its a. storm surge
The force of gravity on objects is proportional to the mass of each object.
(That's a big part of the reason why, when you eat more and your mass
increases, you weigh more.)
The forces of gravity between the Earth and the 6kg ball are 50% greater
than the forces of gravity between the Earth and the 4kg ball.
(The gravitational forces between the 4kg ball and the 6kg ball, or between
both bowling balls and you, are so small that they may be ignored.)
Momentum = mass x velocity
Thus Option A is the correct answer
Momentum (dog) = 10 kg x (0.447 x 30) m/s
= 134.1 Kg m/s
Momentum ( bullet) = 0.02 kg x (0.447 x 800) m/s
= 7.152 Kg m/s
Momentum ( truck) = 0, as v = 0
tightrope has both low mass and low speed, thus its momentum will be low