Answer:
The shortest distance is
Explanation:
The free body diagram of this question is shown on the first uploaded image
From the question we are told that
The speed of the bicycle is 
The distance between the axial is 
The mass center of the cyclist and the bicycle is
behind the front axle
The mass center of the cyclist and the bicycle is
above the ground
For the bicycle not to be thrown over the
Momentum about the back wheel must be zero so

=> 
=> 
Here 
So 
Apply the equation of motion to this motion we have

Where 
and
since the bicycle is coming to a stop

=>
Answer:
b. 88, 222
Explanation:
235U₉₂ ----→ Alpha --------→ 231P₉₀ ----→- beta -----→ 231Q₉₁ ------→-beta -------→231R₉₂--------→-alpha ------→-227S₉₀ ------→ gamma -----→-227S₉₀ ----------→ neutron ------→-226T₉₀-----------→ alpha --------→222 X ₈₈
Atomic No is 88 , atomic weight = 222 .
Answer:
D. magnitude and direction
Explanation:
Answer:
specific heat
Explanation:
Specific heat is the amount of heat required to change the temperature of 1 gram of a substance by 1°C, and it is related to the chemical composition of the substance
<span>The flywheel is solid cylindrical disc. Moment of inertial = ½ * mass * radius^2
Mass = 40.0 kg
Radius = ½ * 76.0 cm = 38 cm = 0.38 meter
Moment of inertial = ½ * 41 * 0.36^2
Convert rpm to radians/second
The distance of 1 revolution = 1 circumference = 2 * π * r
The number of radians/s in 1 revolution = 2 * π
1 minute = 60 seconds
1 revolution per minute = 2 * π radians / 60 seconds = π/30 rad/s
Initial angular velocity = 500 * π/30 = 16.667 * π rad/s
170 revolutions = 170 * 2 * π = 340 * π radians
The flywheel’s initial angular velocity = 16.667 * π rad/s. It decelerated at the rate of 1.071 rad/s^2 for 48.89 seconds.
θ = ωi * t + ½ * α * t^2
θ = 16.667 * π * 48.89 + ½ * -1.071 * 48.89^2
2559.9 - 1280
θ = 1280 radians</span>