1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lesya692 [45]
3 years ago
14

An advantage of light microscopes compared to electron microscopes is that light microscopes _____.

Physics
2 answers:
Inessa [10]3 years ago
8 0

C is the correct answer because electron microscopes can’t be used to view living specimens because the methods used to prepare them for viewing kills cells.

ivolga24 [154]3 years ago
5 0
<span>C is the correct answer. Electron microscopes require a vacuum to work, so living cells cannot be seen because they cannot respire. Light microscopes use a ray of visible light instead of a beam of electrons to magnify something so it can be seen by the naked eye. There are two different types of electron microscope: transmission (TEM) and scanning (SEM).</span>
You might be interested in
An object with a mass of 90 grams, moving at a constant velocity of 6 meters per second, has __________.
son4ous [18]
<span>A. a momentum of 540 grams per meters per second The momentum equation is p = mv. P is the variable for momentum, m is the variable for mass and v is the variable for velocity. To find the momentum, you must multiple the mass of the object by the velocity it is traveling by. The unit for momentum is the mass per meter per second.</span>
5 0
3 years ago
Read 2 more answers
I will mark as the brainliest answer<br><br>plz 8,9,10​
blagie [28]

Answer:

8.  acceleration = \dfrac{d(velocity)}{d(time)}  = 1 unit .

9. acceleration = \dfrac{d(velocity)}{d(time)}  = -1 unit.

10. acceleration = \dfrac{d(velocity)}{d(time)}  = 0 units.

Explanation:

8. i) acceleration = velocity / time

  ii) In this figure velocity = time

  iii) therefore acceleration = \dfrac{d(velocity)}{d(time)} = 1 unit .

9. i) acceleration = velocity / time

  ii) In this figure 4 = m + 5, therefore m = -1

     therefore velocity = (-0.5 \times time) + 5

  iii) therefore acceleration = \dfrac{d(velocity)}{d(time)}  = -1 units.

10.) velocity is constant at 2

     therefore acceleration = \dfrac{d(velocity)}{d(time)}  = 0 units

5 0
3 years ago
How can an electron in an atom lose energy to go from a higher energy level to a lower energy level? select one:
Romashka-Z-Leto [24]
I belive that the answer is b. 
8 0
3 years ago
PLEASE HELP AS SOON AS POSSIBLE ILL MARK BRALIEST TO WHOEVER IS CORRECT
Reptile [31]

Answer:

There are two significant figures in 2.200 x 10^7

3 0
3 years ago
two students are on a balcony 19.6 m above the street. one student throws a ball vertically downward at 14.7 m:ds. at the same i
NARA [144]

A. The difference in the two ball's time in the air is 3 seconds

B. The velocity of each ball as it strikes the ground is 24.5 m/s

C. The balls 0.500 s after they are thrown are 14.7 m apart

<h3>Further explanation</h3>

Acceleration is rate of change of velocity.

\large {\boxed {a = \frac{v - u}{t} } }

\large {\boxed {d = \frac{v + u}{2}~t } }

<em>a = acceleration ( m/s² )</em>

<em>v = final velocity ( m/s )</em>

<em>u = initial velocity ( m/s )</em>

<em>t = time taken ( s )</em>

<em>d = distance ( m )</em>

Let us now tackle the problem!

<u>Given:</u>

Initial Height = H = 19.6 m

Initial Velocity = u = 14.7 m/s

<u>Unknown:</u>

A. Δt = ?

B. v = ?

C. Δh = ?

<u>Solution:</u>

<h2>Question A:</h2><h3>First Ball</h3>

h = H - ut - \frac{1}{2}gt^2

0 = 19.6 - 14.7t - \frac{1}{2}(9.8)t^2

0 = 19.6 - 14.7t - 4.9t^2

4.9t^2 + 14.7t - 19.6 = 0

t^2 + 3t - 4 = 0

(t + 4)(t - 1) = 0

(t - 1) = 0

\boxed {t = 1 ~ second}

<h3>Second Ball</h3>

h = H + ut - \frac{1}{2}gt^2

0 = 19.6 + 14.7t - \frac{1}{2}(9.8)t^2

0 = 19.6 + 14.7t - 4.9t^2

4.9t^2 - 14.7t - 19.6 = 0

t^2 - 3t - 4 = 0

(t - 4)(t + 1) = 0

(t - 4) = 0

\boxed {t = 4 ~ seconds}

The difference in the two ball's time in the air is:

\Delta t = 4 ~ seconds - 1 ~ second

\large {\boxed {\Delta t = 3 ~ seconds} }

<h2>Question B:</h2><h3>First Ball</h3>

v^2 = u^2 - 2gH

v^2 = (-14.7)^2 + 2(-9.8)(-19.6)

v^2 = 600.25

v = \sqrt {600.25}

\boxed {v = 24.5 ~ m/s}

<h3>Second Ball</h3>

v^2 = u^2 - 2gH

v^2 = (14.7)^2 + 2(-9.8)(-19.6)

v^2 = 600.25

v = \sqrt {600.25}

\boxed {v = 24.5 ~ m/s}

The velocity of each ball as it strikes the ground is 24.5 m/s

<h2>Question C:</h2><h3>First Ball</h3>

h = H - ut - \frac{1}{2}gt^2

h = 19.6 - 14.7(0.5) - \frac{1}{2}(9.8)(0.5)^2

\boxed {h = 11.025 ~ m}

<h3>Second Ball</h3>

h = H + ut - \frac{1}{2}gt^2

h = 19.6 + 14.7(0.5) - \frac{1}{2}(9.8)(0.5)^2

\boxed {h = 25.725 ~ m}

The difference in the two ball's height after 0.500 s is:

\Delta h = 25.725 ~ m - 11.025 ~ m

\large {\boxed {\Delta h = 14.7 ~ m} }

<h3>Learn more</h3>
  • Velocity of Runner : brainly.com/question/3813437
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Kinematics

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle

6 0
3 years ago
Other questions:
  • Which of the following is an example of an allocation decision?|
    13·2 answers
  • Click to review the online content. Then answer the question(s) below, using complete sentences. Scroll down to view additional
    5·1 answer
  • Mercury’s natural state is where the atoms are close to each other but are still free to pass by each other. In which state(s) c
    8·2 answers
  • What kind of relationship benefits both parties involved?
    15·2 answers
  • An electric field of magnitude 2.35 V/m is oriented at an angle of 25.0° with respect to the positive z-direction. Determine the
    12·1 answer
  • I know the enthalpy of a reaction is 23kj/mol. Initially the reaction is taking place at 273 k. To what temperature do i need to
    6·1 answer
  • Give your answer with solution(Easy Question)
    6·1 answer
  • . A person travels by car from one city to another with different constant speeds between pairs of cities. She drives for 30.0 m
    6·2 answers
  • 1. What is the gravitational force between two 4 kilogram masses separated by a distance of 5
    12·1 answer
  • PLEASE HELP WITH THESE WILL GIVE BRAINLEIST
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!