Answer:
I think it's the most important part in this
What are the choices ?
Without some directed choices, I'm, free to make up any
reasonable statement that could be said about Kevin in this
situation. A few of them might be . . .
-- Kevin will have no trouble getting back in time for dinner.
-- Kevin will have no time to enjoy the scenery along the way.
-- Some simple Physics shows us that Kevin is out of his mind.
He can't really do that.
-- Speed = (distance covered) / (time to cover the distance) .
If time to cover the distance is zero, then speed is huge (infinite).
-- Kinetic energy = (1/2) (mass) (speed)² .
If speed is huge (infinite), then kinetic energy is huge squared (even more).
There is not enough energy in the galaxy to push Kevin to that kind of speed.
-- Mass = (Kevin's rest-mass) / √(1 - v²/c²)
-- As soon as Kevin reaches light-speed, his mass becomes infinite.
-- It takes an infinite amount of energy to push him any faster.
-- If he succeeds somehow, his mass becomes imaginary.
-- At that point, he might as well turn around and go home ...
if he ever reached Planet-Y, nobody could see him anyway.
kinetic energy is converted into elastic potential energy stored in the brakes.
If the distance around the equator is reduced by half, then the radius is also reduced by half.
Since the acceleration due to gravity is proportional to 1/(radius²),
the acceleration changes by a factor of 1/(1/2)² = 1/(1/4) = <em>4 </em>.
The acceleration due to gravity ... and also the weight of everything on Earth ...
becomes <em>4 times what it is now</em>.