Metal ores
Explanation:
in an area where subduction has occurred in times past, metal ores are likely to be found.
Metallic ores find subduction zone regions very favorable to crystallize out of a magma.
- Ores have different modes of formation.
- Typically, they are found in hydrothermal vents and black smokers of igneous intrusives.
- These are igneous terrains where metallic sulfides and other minerals crystallize out of magmatic body.
- Metals in magma usually have large sizes and do not partition easily in the melt.
At a subduction zone, partial melting of the subducting plate forces magma into nearby country rock as an intrusive and to the ocean floor where they form black smokers.
Learn more:
Rocks brainly.com/question/2740663
#learnwithBrainly
Answer:
2 meters
Explanation:
when you step away from a reflection you get farther
Answer:
Where the electric potential is constant, the strength of the electric field is zero.
Explanation:
As a test charge moves in a given direction, the rate of change of the electric potential of the charge gives the potential gradient whose negative value is the same as the value of the electric field. In other words, the negative of the slope or gradient of electric potential (V) in a direction, say x, gives the electric field (Eₓ) in that direction. i.e
Eₓ = - dV / dx ----------(i)
From equation (i) above, if electric potential (V) is constant, then the differential (which is the electric field) gives zero.
<em>Therefore, a constant electric potential means that electric field is zero.</em>
The protons and electrons are held in place on the x axis.
The proton is at x = -d and the electron is at x = +d. They are released at the same time and the only force that affects movement is the electrostatic force that is applied on both subatomic particles. According to Newton's third law, the force Fpe exerted on protons by the electron is opposite in magnitude and direction to the force Fep exerted on the electron by the proton. That is, Fpe = - Fep. According to Newton's second law, this equation can be written as
Mp * ap = -Me * ae
where Mp and Me are the masses, and ap and ae are the accelerations of the proton and the electron, respectively. Since the mass of the electron is much smaller than the mass of the proton, in order for the equation above to hold, the acceleration of the electron at that moment must be considerably larger than the acceleration of the proton at that moment. Since electrons have much greater acceleration than protons, they achieve a faster rate than protons and therefore first reach the origin.
Answer:
a) a geostationary satellite is that it is always at the same point with respect to the planet,
b) f = 2.7777 10⁻⁵ Hz
c) d) w = 1.745 10⁻⁴ rad / s
Explanation:
a) The definition of a geostationary satellite is that it is always at the same point with respect to the planet, that is, its period of revolutions is the same as the period of the planet
- T = 10 h (3600 s / 1h) = 3.6 104 s
b) the period the frequency are related
T = 1 / f
f = 1 / T
f = 1 / 3.6 104
f = 2.7777 10⁻⁵ Hz
c) the distance traveled by the satellite in 1 day
The distance traveled is equal to the length of the circumference
d = 2pi (R + r)
d = 2pi (69 911 103 + 120 106)
d = 1193.24 m
d) the angular velocity is the angle traveled between the time used.
.w = 2pi /t
w = 2pi / 3.6 10⁴
w = 1.745 10⁻⁴ rad / s
how fast is
v = w r
v = 1.75 10-4 (69.911 106 + 120 106)
v = 190017 m / s