Answer:1.55 times
Explanation:
Given
First wavelength
Second wavelength
According wien's diplacement law

where 
T=Temperature
Let
be the temperatures corresponding to
respectively.



Thus object with
is 1.55 times hotter than object with wavelength 
Answer:
given
y=6.0sin(0.020px + 4.0pt)
the general wave equation moving in the positive directionis
y(x,t) = ymsin(kx -?t)
a) the amplitude is
ym = 6.0cm
b)
we have the angular wave number as
k = 2p /?
or
? = 2p / 0.020p
=1.0*102cm
c)
the frequency is
f = ?/2p
= 4p/2p
= 2.0 Hz
d)
the wave speed is
v = f?
= (100cm)(2.0Hz)
= 2.0*102cm/s
e)
since the trignometric function is (kx -?t) , sothe wave propagates in th -x direction
f)
the maximum transverse speed is
umax =2pfym
= 2p(2.0Hz)(6.0cm)
= 75cm/s
g)
we have
y(3.5cm ,0.26s) = 6.0cmsin[0.020p(3.5) +4.0p(0.26)]
= -2.0cm
Answer:
(a) 62.69 nJ/m^3
(b) 1015.22 μJ/m^3
Explanation:
Electric field, E = 119 V/m
Magnetic field, B = 5.050 x 10^-5 T
(a) Energy density of electric field = 
= 6.269 x 10^-8 J/m^3 = 62.69 nJ/m^3
(b) energy density of magnetic field = 

= 1.01522 x 10^-3 J/m^3 = 1015.22 μJ/m^3
Answer:
F=m(11.8m/s²)
For example, if m=10,000kg, F=118,000N.
Explanation:
There are only two vertical forces acting on the rocket: the force applied from its thrusters F, and its weight mg. So, we can write the equation of motion of the rocket as:

Solving for the force F, we obtain that:

Since we know the values for a (2m/s²) and g (9.8m/s²), we have that:

From this relationship, we can calculate some possible values for F and m. For example, if m=10,000kg, we can obtain F:

In this case, the force from the rocket's thrusters is equal to 118,000N.