Answer:
The acceleration of the sprinter is 1.4 m/s²
Explanation:
Hi there!
The equation of position of the sprinter is the following:
x = x0 + v0 · t + 1/2 · a · t²
Where:
x = position of the sprinter at a time t.
x0 = initial position.
v0 = initial velocity.
t = time.
a = acceleration.
Since the origin of the frame of reference is located at the starting point and the sprinter starts from rest, then, x0 and v0 are equal to zero:
x = 1/2 · a · t²
At t = 9.9 s, x = 71 m
71 m = 1/2 · a · (9.9 s)²
2 · 71 m / (9.9 s)² = a
a = 1.4 m/s²
The acceleration of the sprinter is 1.4 m/s²
Answer: v = 880m/s
Explanation: The length of a string is related to the wavelength of sound passing through the string at the fundamental frequency is given as
L = λ/2 where L = length of string and λ = wavelength.
But L = 1m
1 = λ/2
λ = 2m.
But the frequency at fundamental is 440Hz and
V = fλ
Hence
v = 440 * 2
v = 880m/s
D. Number of cycles/ unit of time
Answer:
(a) 0.061 m/s
(b) 0.103 m/s
Explanation:
From the law of conservation of momentum, the sum of initial momentum equals the sum of final momentum
Momentum, p=mv where m is the mass and v is the velocity
where
is the common velocity,
is the velocity of the ball
and
are masses of the ball and person respectively
Substituting the given values then

(b)
Momentum, p=mv where m is the mass and v is the velocity

is the velocity of the ball ,
is the velocity of ball afterwards and
is your speed,
and
are masses of the ball and person respectively. Since it bounces back, we give it a negative value hence

Answer:
5.25
Explanation:
tell me if u need an explanation