Answer:
The work done on the wagon is 37 joules.
Explanation:
Given that,
The force applied by Charlie to the right, F = 37.2 N
The force applied by Sara to the left, F' = 22.4 N
We need to find the work done on the wagon after it has moved 2.50 meters to the right. The net force acting on the wagon is :



Work done on the wagon is given by the product of net force and displacement. It is given by :


W = 37 Joules
So, the work done on the wagon is 37 joules. Hence, this is the required solution.
Answer: Voltage is the same across each component of the parallel circuit. The sum of the currents through each path is equal to the total current that flows from the source. You can find total resistance in a Parallel circuit with the following formula: 1/Rt = 1/R1 + 1/R2 + 1/R3 +.
Hope this helps!
Eight electrons surrounding each non-hydrogen atom is the optimal electronic arrangement for covalent molecules because it is needed to achieve an octet structure and is necessary to fill both the s and p subshells of electrons.
<h3>What is Covalent bonding?</h3>
This is the type of bonding which involves the sharing of electrons between atoms of an element.
This is done to achieve an octet configuration thereby making them stable and less reactive thereby making it the most appropriate choice.
Read more about Covalent bonding here brainly.com/question/3447218
#SPJ4
Answer:
<u>CHEMICAL CHANGE</u>:
A change in which one or more substances are converted into new substances is a <em>chemical change</em>.
<u>EXPLANATION:</u>
Chemical changes occur when a substance combines with another to form a new substance, called chemical synthesis or, alternatively, chemical decomposition into two or more different substances.
<u>EXAMPLE:</u>
<em>Examples of Chemical Change in Everyday Life
</em>
Burning of paper and log of wood.
Digestion of food.
Boiling an egg.
Chemical battery usage.
Electroplating a metal.
Baking a cake.
Milk going sour.
Various metabolic reactions that take place in the cells.
Answer:
Let I and j be the unit vector along x and y axis respectively.
Electric field at origin is given by
E= kq1/r1^2 i + kq2/r2^2j
= 9*10^9*1.6*10^-19*/10^-6*(2i+ j)
= (2.88i + 1.44j)*10^-3 N/C
Force on charge= qE= 3*10^-19*1.6*(2.88i +1. 44 j) *10^-3
F= (1.382 i + 0.691 j) *10^-21
Goodluck
Explanation: