First convert the kg to g ----- 0.03kg = 30g
Then divide the mass by the volume ----- 30g ÷ 25mL = 1.2
The density is 1.2g/mL<span />
<span>2Al + 3Br2 -------------> 2AlBr3
</span>3 g Al = 0.11 mol Al.
<span>6 g Br2 = 0.0375 mole bromine (it is diatomic). </span>
<span>moles of aluminium will take part in reaction = 0.0375 X (2/3) = 0.025. </span>
<span>Gram-mole of AlBr3 will be produced = 0.025 mole = 6.6682 g.
</span>moles of Al left = 0.11 - 0.025 = 0.086<span>
</span>
Answer:
The answer to your question is below
Explanation:
1) 0.143g of Mg into atoms
- Look for the atomic number of Magnesium in the Periodic table
Atomic number = 24.31 g
-Use the Avogadro's number to find the number of atoms
24.31g ------------------- 6.023 x 10²³ atoms
0.143 g ----------------- x
x = (0.143 x 6.023 x 10²³) / 24.31
x = 8.613 x 10²² / 24.31
x = 3.54 x 10²¹ atoms
2) 0.101 kg of Ti into atoms
-Look for the atomic number of Titanium in the Periodic table
Atomic number = 47.87 g
-Use the Avogadro's number to find the number of atoms
47.87 g --------------------- 6.023 x 10²³
101 g ---------------------- x
x = (101 x 6.023 x 10²³) / 47.87
x = 6.08x 10²⁵ / 47.87
x = 1.27 x 10²⁴ atoms
Answer:
When ionic solutes are dissolved in water, the molecules of water pull the ions of the crystal apart and the electrostatic forces are cut off. Further the ions are surrounded by the water molecules which act as a barrier around the ions and prevent the recombination of ions.
Explanation:
Sorry, this isn't my answer. I got it from google, but I hope it helps!
:))
Melting point is dependent on the intermolecular forces which means the bonds between the molecules of bromine as it is a simple molecular structure