Tension in the rope due to applied force will be given as

angle of applied force with horizontal is 37 degree
displacement along the floor = 6.1 m
so here we can use the formula of work done

now we can plug in all values above


So here work done to pull is given by 691.8 J
Answer:
False
because I got that question and I gotted right
Answer:
a
The height is 
b
The horizontal distance is 
Explanation:
From the question we are told that
The speed is 
The angle is 
The height of the cannon from the ground is h = 2 m
The distance of the net from the ground is k = 1 m
Generally the maximum height she reaches is mathematically represented as

=> ![H = \frac{(15)^2 [sin (40)]^2 }{2 * 9.8} + 2](https://tex.z-dn.net/?f=H%20%20%3D%20%20%5Cfrac%7B%2815%29%5E2%20%5Bsin%20%2840%29%5D%5E2%20%7D%7B2%20%2A%209.8%7D%20%20%2B%20%202)
=> 
Generally from kinematic equation

Here s is the displacement which is mathematically represented as
s = [-(h-k)]
=> s = -(2-1)
=> s = -1 m
There reason why s = -1 m is because upward motion canceled the downward motion remaining only the distance of the net from the ground which was covered during the first half but not covered during the second half
a = -g = -9.8

So

=> 
using quadratic formula to solve the equation we have

Generally distance covered along the horizontal is

=> 
=> 
<span>Using Coulomb's law: k*(-0.3)*(-0.3)/(d^2)=19.2
D is the distance between the two negative charges</span>
Answer:
0.855 N
Explanation:
Using
F = BILsinФ.................... Equation 1
Where F = magnitude of the force exerted on the wire, B = magnetic Field, I = current, L = Length of the wire in the magnetic Field, Ф = angle between the wire and the magnetic field.
Given: B = 0.95 T, I = 15.0 A, L = 2r, r = radius = 3.0 cm = 0.03 m L = 2×0.03 = 0.06 m, Ф = 90° (perpendicular)
Substitute into equation 1
F = 0.95(15)(0.06)sin90°
F = 0.855 N.
Hence the magnitude of force that is exerted on the wire = 0.855 N