Answer:
a = 6.53 m/s^2
v = 11.5689 m/s
Explanation:
Given data:
engine power is 217 hp
70 % power reached to wheel
total mass ( car + driver) is 1530 kg
from the data given
2/3 rd of weight is over the wheel
w = 2/3rd mg
maximum force

we know that F = ma


the new power is 


solving for speed v

![v = 0.7 \frac{217 [\frac{746 w}{1 hp}]}{1500 \times 6.53}](https://tex.z-dn.net/?f=v%20%3D%200.7%20%5Cfrac%7B217%20%5B%5Cfrac%7B746%20w%7D%7B1%20hp%7D%5D%7D%7B1500%20%5Ctimes%206.53%7D)
v = 11.5689 m/s
A generator transforms mechanical into electrical, a transformer reduces/increases the voltage of an alternating current, a magnet attracts metal, and a motor converts electrical energy into mechanical energy.
So, the answer is Motor.
First we write the kinematic equations
a
v = a * t + vo
r = (1/2) at ^ 2 + vo * t + ro
We have then that:
(10.4 - t) = time that they run at their maximum speed
For Laura:
d = (1/2) at ^ 2 + (at) (10.4 - t)
100 m = (1/2) a (1.96) ^ 2 + [(1.96) a] (8.44)
100 = 1.9208a + 16.5424a
100 = 18.4632a
a = 100 / 18.4632 = 5.42 m / s ^ 2
For Healen:
100 = (1/2) a (3.11) ^ 2 + [(3.11) a] (7.29)
100 = 4.83605a + 22.6719a
100 = 27.50795a
a = 100 / 27.50795
a = 3.64 m / s ^ 2
Answer:
the acceleration of each sprinter is
Laura: 5.42 m / s ^ 2
Healen 3.64 m / s ^ 2