Answer:
<h3>38,673.9N</h3>
Explanation:
According to newton's second law:
Force = mass * acceleration
Given
Mass = 873kg
acceleration = 44.66m/s²
Magnitude of the force is expressed as;
F = ma
F = 873 * 44.6
F = 38,673.9N
<em>Hence the magnitude of the net force exerted on the dragster during this time is 38,673.9N</em>
When It begins to drop because that when gravity will have its strongest pull on the object.
Answer:
Newtons law
Explanation:
According to this law, a body at rest tends to stay at rest, and a body in motion tends to stay in motion, unless acted on by a net external force.
Answer:
The displacement in t = 0,
y (0) = - 0.18 m
Explanation:
Given f = 40 Hz , A = 0.25m , μ = 0.02 kg / m, T = 20.48 N
v = √ T / μ
v = √20.48 N / 0.02 kg /m = 32 m/s
λ = v / f
λ = 32 m/s / 40 Hz = 0.8
K = 2 π / λ
K = 2π / 0.8 = 7.854
φ = X * 360 / λ
φ = 0.5 * 360 / 0.8 = 225 °
Using the model of y' displacement
y (t) = A* sin ( w * t - φ )
When t = 0
y (0) = 0.25 m *sin ( w*(0) - 225 )
y (0) = 0.25 * -0.707
y (0) = - 0.18 m