1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katen [24]
3 years ago
14

Proper design of automobile braking systems must account for heat buildup under heavy braking. Part A Calculate the thermal ener

gy dissipated from brakes in a 1600 kg car that descends a 15 ∘ hill. The car begins braking when its speed is 95 km/h and slows to a speed of 40 km/h in a distance of 0.34 km measured along the road.
Physics
1 answer:
AVprozaik [17]3 years ago
8 0

Answer:

1838216 J

Explanation:

95 km/h = 26.39 m/s

40 km/h = 11.11 m/s

Initial kinetic energy

= .5 x 1600 x(26.39)²

= 557145.67 J

Final kinetic energy

= .5 x 1600 x ( 11.11)²

= 98745.68 J

Loss of kinetic energy

= 458400 J

Loss of potential energy

= mg x loss of height

= 1600 x 9.8 x 340 sin 15

= 1379816 J

Sum of Loss of potential energy and Loss of kinetic energy

=  1379816 + 458400

= 1838216 J

This is the work done by the friction . So this is heat generated.

You might be interested in
Brainly malfunction?|<br><br> I'm not sure why but...
Brut [27]

Answer:

its probably still trying to load ur next rank or whatever it did it to me too

Explanation:

6 0
3 years ago
If you were a pastor, and you were getting married, would you hire a pastor, or would you do the wedding yourself?
bearhunter [10]
I would hire a pastor.
4 0
3 years ago
Read 2 more answers
What’s the difference between the resistance of 1,000 feet of aluminum No. 14 wire and 1,000 feet of No. 14 copper wire? A. The
Lapatulllka [165]

the answer is A. The aluminum has 0.84 ohms more resistance.

3 0
3 years ago
Which two forces operate over the longest distances?
Harman [31]

Answer:

D Electromagnetic and gravitational

5 0
3 years ago
Two charges are located in the x – y plane. If ????1=−4.10 nC and is located at (x=0.00 m,y=0.600 m) , and the second charge has
faust18 [17]

Answer:

The x-component of the electric field at the origin = -11.74 N/C.

The y-component of the electric field at the origin = 97.41 N/C.

Explanation:

<u>Given:</u>

  • Charge on first charged particle, q_1=-4.10\ nC=-4.10\times 10^{-9}\ C.
  • Charge on the second charged particle, q_2=3.80\ nC=3.80\times 10^{-9}\ C.
  • Position of the first charge = (x_1=0.00\ m,\ y_1=0.600\ m).
  • Position of the second charge = (x_2=1.50\ m,\ y_2=0.650\ m).

The electric field at a point due to a charge q at a point r distance away is given by

\vec E = \dfrac{kq}{|\vec r|^2}\ \hat r.

where,

  • k = Coulomb's constant, having value \rm 8.99\times 10^9\ Nm^2/C^2.
  • \vec r = position vector of the point where the electric field is to be found with respect to the position of the charge q.
  • \hat r = unit vector along \vec r.

The electric field at the origin due to first charge is given by

\vec E_1 = \dfrac{kq_1}{|\vec r_1|^2}\ \hat r_1.

\vec r_1 is the position vector of the origin with respect to the position of the first charge.

Assuming, \hat i,\ \hat j are the units vectors along x and y axes respectively.

\vec r_1=(0-x_1)\hat i+(0-y_1)\hat j\\=(0-0)\hat i+(0-0.6)\hat j\\=-0.6\hat j.\\\\|\vec r_1| = 0.6\ m.\\\hat r_1=\dfrac{\vec r_1}{|\vec r_1|}=\dfrac{0.6\ \hat j}{0.6}=-\hat j.

Using these values,

\vec E_1 = \dfrac{(8.99\times 10^9)\times (-4.10\times 10^{-9})}{(0.6)^2}\ (-\hat j)=1.025\times 10^2\ N/C\ \hat j.

The electric field at the origin due to the second charge is given by

\vec E_2 = \dfrac{kq_2}{|\vec r_2|^2}\ \hat r_2.

\vec r_2 is the position vector of the origin with respect to the position of the second charge.

\vec r_2=(0-x_2)\hat i+(0-y_2)\hat j\\=(0-1.50)\hat i+(0-0.650)\hat j\\=-1.5\hat i-0.65\hat j.\\\\|\vec r_2| = \sqrt{(-1.5)^2+(-0.65)^2}=1.635\ m.\\\hat r_2=\dfrac{\vec r_2}{|\vec r_2|}=\dfrac{-1.5\hat i-0.65\hat j}{1.634}=-0.918\ \hat i-0.398\hat j.

Using these values,

\vec E_2= \dfrac{(8.99\times 10^9)\times (3.80\times 10^{-9})}{(1.635)^2}(-0.918\ \hat i-0.398\hat j) =-11.74\ \hat i-5.09\ \hat j\  N/C.

The net electric field at the origin due to both the charges is given by

\vec E = \vec E_1+\vec E_2\\=(102.5\ \hat j)+(-11.74\ \hat i-5.09\ \hat j)\\=-11.74\ \hat i+(102.5-5.09)\hat j\\=(-11.74\ \hat i+97.41\ \hat j)\ N/C.

Thus,

x-component of the electric field at the origin = -11.74 N/C.

y-component of the electric field at the origin = 97.41 N/C.

4 0
3 years ago
Other questions:
  • A red ball is thrown down with an initial speed of 1.1m/s from a height of 28 meters above the ground. Then 0.5 seconds after th
    5·1 answer
  • Sarah moves her box in 3 minutes and does 14 J of work. John moves his box in the same amount of time using 12 J of work. Who is
    7·2 answers
  • Which type of elements are likely to have no electical charge at all
    12·2 answers
  • A stuntwoman is going to attempt a jump across a canyon that is 77 m wide. The ramp on the far side of the canyon is 25 m lower
    15·1 answer
  • Which of the followings did newton help create ?
    15·2 answers
  • Doing work alawyas means blank energy​
    11·1 answer
  • Table B:Convection (Cold Water) Time (minutes : seconds) Food Coloring Movement 0:30 1:00 1:30 2:00 2:30 3:00
    15·1 answer
  • HELP please im gonna fail
    13·1 answer
  • Which element is MOST LIKELY to be dull?<br> carbon<br> aluminum<br> mercury<br> sodium
    13·1 answer
  • A red light means to stop. If you are turning from a two-way road or onto a two-way road, then you are NOT allowed to turn
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!