Answer:
This is your answer. If I'm right so,
Please mark me as brainliest. thanks!!
Power is calculated as work per unit time, and work in turn is calculated as force multiplied by distance. In this case, the force required is equivalent to the weight of the barbell multiplied by acceleration due to gravity.
P = W/t = Fd/t = mgd/t = (200 kg)(9.81 m/s^2)(2 m)/2.2 s = 1783.64 Watts.
The resultant force on the object is
∑ <em>F</em> = 〈0, 8〉 N + 〈6, 0〉 N = 〈6, 8〉 N
which has a magnitude of
<em>F</em> = √((6 N)² + (8 N)²) = √(100 N²) = 10 N
By Newton's second law, the acceleration has magnitude <em>a</em> such that
<em>F</em> = <em>m a</em>
10 N = (2 kg) <em>a</em>
<em>a</em> = (10 N) / (2 kg)
<em>a</em> = 5 m/s²
so the answer is B.
Answer:
The correct answers are the proportionality of the fields concerning distance, vector fields, and forces at a distance.
Explanation:
The similarities between magnetic fields and electric fields are that electric fields are produced by two charges that can be positive and negative. Magnetic fields are associated with two magnetic poles, although they are also produced by moving charges. Both fields are inversely proportional to the square of the distance between the sources, both fields are vectorial and both act by distant forces.
Have a nice day!
I think this is AWESOME, but I think the last sentence of your conclusion is a bit off. <span> "If someone has an allergy to oil then they can still eat cake because applesauce makes an amazing substitute for oil." I think that you should say "This recipe is great for those who cannot eat/drink oil, the applesauce is an amazing substitute for oil."
I hope I helped! -Wajiha</span>