Answer:
CH₄
Explanation:
According to Graham's law, <em>the rate of effusion of a gas (r) is inversely proportional to the square root of its molar mass (M)</em>.
Let's consider the following gases and their molar masses.
A) NH₃ 17.03 g/mol
B) CH₄ 16.04 g/mol
C) Ar 39.95 g/mol
D) HBr 80.91 g/mol
E) HCl 36.46 g/mol
Of these gases, CH₄ will have the greatest rate of effusion at a given temperature because it has the lowest molar mass.
Molar mass of oxygen is:
M(O)=16 g/mol
Molar mass of carbon is:
M(C)=12 g/mol
Molar mass of carbon dioxide is:
M(CO2)=M(C)+2*M(O)
M(CO2)=12 g/mol+2*16g/mol
M(CO2)=44 g/mol
<span>Molar mass(M) is the mass of 1 mole of the substance (grams per mole of a compound).</span>
Answer see because there is a lack of potassium peanuts and walnuts also help the gravitational pull moons rocks different one but because of this energy conversion is the after effect of the camera being shot
Answer:
<em>Hi Todoroki here!!! </em>
Explanation:
Chlorine has the electron configuration [Ne]3s 2 3p 5, with the seven electrons in the third and outermost shell acting as its valence electrons. Like all halogens, it is thus one electron short of a full octet, and is hence a strong oxidising agent, reacting with many elements in order to complete its outer shell.
<em>Your welcome!!</em>
An incandescent bulb becomes hotter than a fluorescent bulb when turned on because in a regular incandescent bulb, there is tungsten wire where electricity is converts into heat. A regular incandescent light bulb requires 4 times more energy than a fluorescent bulb in order to produce the same amount of light. The conversion is such that for a 75-watt bulb, temperature get raised to approximately 2000 K. For such a high temperature, the radiating energy from the wire have some visible light. In such bulbs, 90% of the electricity get consumed in producing heat and only 10% produces light thus, they are not much efficient source of light.
On the other hand, fluorescent bulbs produce light with less amount of heat. In them, 40% of electricity is consumed in producing light and 60% in heat which is very less as compared to heat produced by a incandescent bulb. This is because when it get turned on, mercury atoms inside the bulb collides with electrons and produce UV light which is then converted into visible light using thin layer of phosphor power present inside the bulb. This produces low amount of heat thus, the bulb stays cooler, the bigger size of bulb also helps in dispersing heat.
Therefore, a fluorescent light bulb is not as hot as an incandescent light bulb.