Answer:
E) Intramolecular bond angles change
Explanation:
Infrared Radiation:
IR is electromagnetic radiations. The wavelength i.e. 700nm to 1000 mm of infrared is longer than invisible light and Its frequency is lower than light, that's why it is invisible to light.
- When IR radiation strike the molecule it absorbed by this molecule.
- This radiation used to identify and study chemicals.
- Infrared radiation interact with intra-bonds of the molecule.
- Bonds in the molecules have vibrational translational and rotational movements
- Due to these vibration, rotation and translation movement it absorb a radiation of specific frequency and wavelength
- These movements of bond are very small and absorbs radiations of very low frequency
- So when Infrared light or radiation absorbed the intra-bonds of the molecule get affected and angles of these bonds changes.
- As the frequency of the absorbed radiation matches the frequency of the bond that vibrates.
So
The correct option is option E
E) Intramolecular bond angles change
* Note:
it couldn't be option A as the frequency of IR is not enough to rotate a whole molecule
It Couldn't be option B as IR rations are electromagnetic radiation of longer wave length so it one can not see it with light so how it will glow a molecule
It also not could be the option C as for the excitation of electrons require much higher energy.
It also not the option D as nuclear magnetic spin is associated with nuclear magnetic radiation that are much different from IR.
Explanation:
Sodium Carbonate = Na2CO3
Hope it helps ya
Answer: 0.082 atm L k^-1 mole^-1
Explanation:
Given that:
Volume of gas (V) = 62.0 L
Temperature of gas (T) = 100°C
Convert 100°C to Kelvin by adding 273
(100°C + 273 = 373K)
Pressure of gas (P) = 250 kPa
[Convert pressure in kilopascal to atmospheres
101.325 kPa = 1 atm
250 kPa = 250/101.325 = 2.467 atm]
Number of moles (n) = 5.00 moles
Gas constant (R) = ?
To get the gas constant, apply the formula for ideal gas equation
pV = nRT
2.467 atm x 62.0L = 5.00 moles x R x 373K
152.954 atm•L = 1865 K•mole x R
To get the value of R, divide both sides by 1865 K•mole
152.954 atm•L / 1865 K•mole = 1865 K•mole•R / 1865 K•mole
0.082 atm•L•K^-1•mole^-1 = R
Thus, the value of gas constant is 0.082 atm L k^-1 mole^-1
Answer:
Electronic configuration, also called electronic structure, the arrangement of electrons in energy levels around an atomic nucleus.
Carbon is found in oil and gas.
Aluminum a light metal used in making pots and pans.
Bromine is used in photography.