Answer:
a) Neutralisation
b) Combustion
c) Synthesis
d) Decomposition
e) Neutralisation
f) Double Displacement Reaction
h) Single Displacement Reaction
i) Double Displacement Reaction
j) Combustion
Explanation:
Synthesis is a reaction where various compounds/ elements react to form a totally new compound.
Decomposition is a reaction where a single compound breaks down into several components due to excessive heating or energy applied.
Single Displacement Reaction is a type of chemical reaction where an element reacts with a compound and takes the place of another element in that compound.
Double Displacement Reaction is a type of chemical reaction where two compounds react, and the positive ions (cation) and the negative ions (anion) of the two reactants switch places, forming two new compounds or products.
Combustion is a reaction where a compound/ element oxidises in the presence of Oxygen.
Neutralisation reaction is a reaction where an acid reacts with a base to form a salt.
It becomes a liquid with the water
Cell wall:
-acts like a skin
- most selectively controls what is inside and outside of the cell
-rigid
Cell membrane:
-gives a plant cell
-not rigid
5 Na molecules and 5 Cl molecules
This problem is describing the state two gases have when separated and together as shown on the attached picture. First of all, diagram 1 shows how they are separated in two containers with apparently equal volumes, whereas diagram 2 shows the removal of the barrier so that they get mixed together.
In this case, we can analyze that each gas has its own pressure and due to the removal of the barrier, both pressure and volume undergo a change. Thus, we can infer that the final volume is doubled with respected to the initial one for each gas, causing the pressure of each gas to be halved and the total pressure the half of the added ones, in agreement to the Boyle's law (inversely proportional relationship between pressure and temperature).
Therefore, the correct choice is:
C. The partial pressure of each gas in the mixture is half its initial pressure; the final total pressure is half the sum of the initial pressures of the two gases.
Learn more: